![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sumeq1i | Structured version Visualization version GIF version |
Description: Equality inference for sum. (Contributed by NM, 2-Jan-2006.) |
Ref | Expression |
---|---|
sumeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
sumeq1i | ⊢ Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sumeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | sumeq1 14618 | . 2 ⊢ (𝐴 = 𝐵 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 Σcsu 14615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-xp 5272 df-cnv 5274 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-iota 6012 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-seq 12996 df-sum 14616 |
This theorem is referenced by: sumeq12i 14629 fsump1i 14699 fsum2d 14701 fsumxp 14702 isumnn0nn 14773 arisum 14791 arisum2 14792 geo2sum 14803 bpoly0 14980 bpoly1 14981 bpoly2 14987 bpoly3 14988 bpoly4 14989 efsep 15039 ef4p 15042 rpnnen2lem12 15153 ovolicc2lem4 23488 itg10 23654 dveflem 23941 dvply1 24238 vieta1lem2 24265 aaliou3lem4 24300 dvtaylp 24323 pserdvlem2 24381 advlogexp 24600 log2ublem2 24873 log2ublem3 24874 log2ub 24875 ftalem5 25002 cht1 25090 1sgmprm 25123 lgsquadlem2 25305 axlowdimlem16 26036 finsumvtxdg2ssteplem4 26654 rusgrnumwwlks 27096 signsvf0 30966 signsvf1 30967 repr0 30998 k0004val0 38954 binomcxplemnotnn0 39057 fsumiunss 40310 dvnmul 40661 stoweidlem17 40737 dirkertrigeqlem1 40818 etransclem24 40978 etransclem35 40989 |
Copyright terms: Public domain | W3C validator |