HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  sumdmdii Structured version   Visualization version   GIF version

Theorem sumdmdii 29402
Description: If the subspace sum of two Hilbert lattice elements is closed, then the elements are a dual modular pair. Remark in [MaedaMaeda] p. 139. (Contributed by NM, 12-Jul-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
sumdmdi.1 𝐴C
sumdmdi.2 𝐵C
Assertion
Ref Expression
sumdmdii ((𝐴 + 𝐵) = (𝐴 𝐵) → 𝐴 𝑀* 𝐵)

Proof of Theorem sumdmdii
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ineq2 3841 . . . . . . 7 ((𝐴 + 𝐵) = (𝐴 𝐵) → (𝑥 ∩ (𝐴 + 𝐵)) = (𝑥 ∩ (𝐴 𝐵)))
21adantr 480 . . . . . 6 (((𝐴 + 𝐵) = (𝐴 𝐵) ∧ (𝑥C𝐵𝑥)) → (𝑥 ∩ (𝐴 + 𝐵)) = (𝑥 ∩ (𝐴 𝐵)))
3 elin 3829 . . . . . . . . 9 (𝑦 ∈ (𝑥 ∩ (𝐴 + 𝐵)) ↔ (𝑦𝑥𝑦 ∈ (𝐴 + 𝐵)))
4 sumdmdi.1 . . . . . . . . . . . 12 𝐴C
5 sumdmdi.2 . . . . . . . . . . . 12 𝐵C
64, 5chseli 28446 . . . . . . . . . . 11 (𝑦 ∈ (𝐴 + 𝐵) ↔ ∃𝑧𝐴𝑤𝐵 𝑦 = (𝑧 + 𝑤))
7 ssel2 3631 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐵𝑥𝑤𝐵) → 𝑤𝑥)
8 chsh 28209 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥C𝑥S )
9 shsubcl 28205 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥S𝑦𝑥𝑤𝑥) → (𝑦 𝑤) ∈ 𝑥)
1093exp 1283 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥S → (𝑦𝑥 → (𝑤𝑥 → (𝑦 𝑤) ∈ 𝑥)))
118, 10syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥C → (𝑦𝑥 → (𝑤𝑥 → (𝑦 𝑤) ∈ 𝑥)))
127, 11syl7 74 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥C → (𝑦𝑥 → ((𝐵𝑥𝑤𝐵) → (𝑦 𝑤) ∈ 𝑥)))
1312exp4a 632 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥C → (𝑦𝑥 → (𝐵𝑥 → (𝑤𝐵 → (𝑦 𝑤) ∈ 𝑥))))
1413com23 86 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥C → (𝐵𝑥 → (𝑦𝑥 → (𝑤𝐵 → (𝑦 𝑤) ∈ 𝑥))))
1514imp41 618 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑤𝐵) → (𝑦 𝑤) ∈ 𝑥)
1615adantlr 751 . . . . . . . . . . . . . . . . . . . 20 (((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑧𝐴) ∧ 𝑤𝐵) → (𝑦 𝑤) ∈ 𝑥)
1716adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑦 = (𝑧 + 𝑤)) → (𝑦 𝑤) ∈ 𝑥)
18 chel 28215 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥C𝑦𝑥) → 𝑦 ∈ ℋ)
1918adantlr 751 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥C𝐵𝑥) ∧ 𝑦𝑥) → 𝑦 ∈ ℋ)
204cheli 28217 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧𝐴𝑧 ∈ ℋ)
215cheli 28217 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤𝐵𝑤 ∈ ℋ)
22 hvsubadd 28062 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑦 𝑤) = 𝑧 ↔ (𝑤 + 𝑧) = 𝑦))
23 ax-hvcom 27986 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑤 + 𝑧) = (𝑧 + 𝑤))
2423eqeq1d 2653 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑤 + 𝑧) = 𝑦 ↔ (𝑧 + 𝑤) = 𝑦))
25 eqcom 2658 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑧 + 𝑤) = 𝑦𝑦 = (𝑧 + 𝑤))
2624, 25syl6bb 276 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑤 + 𝑧) = 𝑦𝑦 = (𝑧 + 𝑤)))
27263adant1 1099 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑤 + 𝑧) = 𝑦𝑦 = (𝑧 + 𝑤)))
2822, 27bitrd 268 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑦 𝑤) = 𝑧𝑦 = (𝑧 + 𝑤)))
29283com23 1291 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((𝑦 𝑤) = 𝑧𝑦 = (𝑧 + 𝑤)))
3019, 20, 21, 29syl3an 1408 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑧𝐴𝑤𝐵) → ((𝑦 𝑤) = 𝑧𝑦 = (𝑧 + 𝑤)))
31303expa 1284 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑧𝐴) ∧ 𝑤𝐵) → ((𝑦 𝑤) = 𝑧𝑦 = (𝑧 + 𝑤)))
32 eleq1 2718 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 𝑤) = 𝑧 → ((𝑦 𝑤) ∈ 𝑥𝑧𝑥))
3331, 32syl6bir 244 . . . . . . . . . . . . . . . . . . . 20 (((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑧𝐴) ∧ 𝑤𝐵) → (𝑦 = (𝑧 + 𝑤) → ((𝑦 𝑤) ∈ 𝑥𝑧𝑥)))
3433imp 444 . . . . . . . . . . . . . . . . . . 19 ((((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑦 = (𝑧 + 𝑤)) → ((𝑦 𝑤) ∈ 𝑥𝑧𝑥))
3517, 34mpbid 222 . . . . . . . . . . . . . . . . . 18 ((((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑦 = (𝑧 + 𝑤)) → 𝑧𝑥)
36 simpr 476 . . . . . . . . . . . . . . . . . 18 ((((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑦 = (𝑧 + 𝑤)) → 𝑦 = (𝑧 + 𝑤))
3735, 36jca 553 . . . . . . . . . . . . . . . . 17 ((((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑦 = (𝑧 + 𝑤)) → (𝑧𝑥𝑦 = (𝑧 + 𝑤)))
3837exp31 629 . . . . . . . . . . . . . . . 16 ((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑧𝐴) → (𝑤𝐵 → (𝑦 = (𝑧 + 𝑤) → (𝑧𝑥𝑦 = (𝑧 + 𝑤)))))
3938reximdvai 3044 . . . . . . . . . . . . . . 15 ((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑧𝐴) → (∃𝑤𝐵 𝑦 = (𝑧 + 𝑤) → ∃𝑤𝐵 (𝑧𝑥𝑦 = (𝑧 + 𝑤))))
40 r19.42v 3121 . . . . . . . . . . . . . . 15 (∃𝑤𝐵 (𝑧𝑥𝑦 = (𝑧 + 𝑤)) ↔ (𝑧𝑥 ∧ ∃𝑤𝐵 𝑦 = (𝑧 + 𝑤)))
4139, 40syl6ib 241 . . . . . . . . . . . . . 14 ((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑧𝐴) → (∃𝑤𝐵 𝑦 = (𝑧 + 𝑤) → (𝑧𝑥 ∧ ∃𝑤𝐵 𝑦 = (𝑧 + 𝑤))))
4241reximdva 3046 . . . . . . . . . . . . 13 (((𝑥C𝐵𝑥) ∧ 𝑦𝑥) → (∃𝑧𝐴𝑤𝐵 𝑦 = (𝑧 + 𝑤) → ∃𝑧𝐴 (𝑧𝑥 ∧ ∃𝑤𝐵 𝑦 = (𝑧 + 𝑤))))
43 elin 3829 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ (𝑥𝐴) ↔ (𝑧𝑥𝑧𝐴))
44 ancom 465 . . . . . . . . . . . . . . . . 17 ((𝑧𝑥𝑧𝐴) ↔ (𝑧𝐴𝑧𝑥))
4543, 44bitri 264 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝑥𝐴) ↔ (𝑧𝐴𝑧𝑥))
4645anbi1i 731 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (𝑥𝐴) ∧ ∃𝑤𝐵 𝑦 = (𝑧 + 𝑤)) ↔ ((𝑧𝐴𝑧𝑥) ∧ ∃𝑤𝐵 𝑦 = (𝑧 + 𝑤)))
47 anass 682 . . . . . . . . . . . . . . 15 (((𝑧𝐴𝑧𝑥) ∧ ∃𝑤𝐵 𝑦 = (𝑧 + 𝑤)) ↔ (𝑧𝐴 ∧ (𝑧𝑥 ∧ ∃𝑤𝐵 𝑦 = (𝑧 + 𝑤))))
4846, 47bitri 264 . . . . . . . . . . . . . 14 ((𝑧 ∈ (𝑥𝐴) ∧ ∃𝑤𝐵 𝑦 = (𝑧 + 𝑤)) ↔ (𝑧𝐴 ∧ (𝑧𝑥 ∧ ∃𝑤𝐵 𝑦 = (𝑧 + 𝑤))))
4948rexbii2 3068 . . . . . . . . . . . . 13 (∃𝑧 ∈ (𝑥𝐴)∃𝑤𝐵 𝑦 = (𝑧 + 𝑤) ↔ ∃𝑧𝐴 (𝑧𝑥 ∧ ∃𝑤𝐵 𝑦 = (𝑧 + 𝑤)))
5042, 49syl6ibr 242 . . . . . . . . . . . 12 (((𝑥C𝐵𝑥) ∧ 𝑦𝑥) → (∃𝑧𝐴𝑤𝐵 𝑦 = (𝑧 + 𝑤) → ∃𝑧 ∈ (𝑥𝐴)∃𝑤𝐵 𝑦 = (𝑧 + 𝑤)))
514chshii 28212 . . . . . . . . . . . . . . 15 𝐴S
52 shincl 28368 . . . . . . . . . . . . . . 15 ((𝑥S𝐴S ) → (𝑥𝐴) ∈ S )
538, 51, 52sylancl 695 . . . . . . . . . . . . . 14 (𝑥C → (𝑥𝐴) ∈ S )
5453ad2antrr 762 . . . . . . . . . . . . 13 (((𝑥C𝐵𝑥) ∧ 𝑦𝑥) → (𝑥𝐴) ∈ S )
555chshii 28212 . . . . . . . . . . . . 13 𝐵S
56 shsel 28301 . . . . . . . . . . . . 13 (((𝑥𝐴) ∈ S𝐵S ) → (𝑦 ∈ ((𝑥𝐴) + 𝐵) ↔ ∃𝑧 ∈ (𝑥𝐴)∃𝑤𝐵 𝑦 = (𝑧 + 𝑤)))
5754, 55, 56sylancl 695 . . . . . . . . . . . 12 (((𝑥C𝐵𝑥) ∧ 𝑦𝑥) → (𝑦 ∈ ((𝑥𝐴) + 𝐵) ↔ ∃𝑧 ∈ (𝑥𝐴)∃𝑤𝐵 𝑦 = (𝑧 + 𝑤)))
5850, 57sylibrd 249 . . . . . . . . . . 11 (((𝑥C𝐵𝑥) ∧ 𝑦𝑥) → (∃𝑧𝐴𝑤𝐵 𝑦 = (𝑧 + 𝑤) → 𝑦 ∈ ((𝑥𝐴) + 𝐵)))
596, 58syl5bi 232 . . . . . . . . . 10 (((𝑥C𝐵𝑥) ∧ 𝑦𝑥) → (𝑦 ∈ (𝐴 + 𝐵) → 𝑦 ∈ ((𝑥𝐴) + 𝐵)))
6059expimpd 628 . . . . . . . . 9 ((𝑥C𝐵𝑥) → ((𝑦𝑥𝑦 ∈ (𝐴 + 𝐵)) → 𝑦 ∈ ((𝑥𝐴) + 𝐵)))
613, 60syl5bi 232 . . . . . . . 8 ((𝑥C𝐵𝑥) → (𝑦 ∈ (𝑥 ∩ (𝐴 + 𝐵)) → 𝑦 ∈ ((𝑥𝐴) + 𝐵)))
6261ssrdv 3642 . . . . . . 7 ((𝑥C𝐵𝑥) → (𝑥 ∩ (𝐴 + 𝐵)) ⊆ ((𝑥𝐴) + 𝐵))
6362adantl 481 . . . . . 6 (((𝐴 + 𝐵) = (𝐴 𝐵) ∧ (𝑥C𝐵𝑥)) → (𝑥 ∩ (𝐴 + 𝐵)) ⊆ ((𝑥𝐴) + 𝐵))
642, 63eqsstr3d 3673 . . . . 5 (((𝐴 + 𝐵) = (𝐴 𝐵) ∧ (𝑥C𝐵𝑥)) → (𝑥 ∩ (𝐴 𝐵)) ⊆ ((𝑥𝐴) + 𝐵))
65 chincl 28486 . . . . . . . 8 ((𝑥C𝐴C ) → (𝑥𝐴) ∈ C )
664, 65mpan2 707 . . . . . . 7 (𝑥C → (𝑥𝐴) ∈ C )
67 chslej 28485 . . . . . . 7 (((𝑥𝐴) ∈ C𝐵C ) → ((𝑥𝐴) + 𝐵) ⊆ ((𝑥𝐴) ∨ 𝐵))
6866, 5, 67sylancl 695 . . . . . 6 (𝑥C → ((𝑥𝐴) + 𝐵) ⊆ ((𝑥𝐴) ∨ 𝐵))
6968ad2antrl 764 . . . . 5 (((𝐴 + 𝐵) = (𝐴 𝐵) ∧ (𝑥C𝐵𝑥)) → ((𝑥𝐴) + 𝐵) ⊆ ((𝑥𝐴) ∨ 𝐵))
7064, 69sstrd 3646 . . . 4 (((𝐴 + 𝐵) = (𝐴 𝐵) ∧ (𝑥C𝐵𝑥)) → (𝑥 ∩ (𝐴 𝐵)) ⊆ ((𝑥𝐴) ∨ 𝐵))
7170exp32 630 . . 3 ((𝐴 + 𝐵) = (𝐴 𝐵) → (𝑥C → (𝐵𝑥 → (𝑥 ∩ (𝐴 𝐵)) ⊆ ((𝑥𝐴) ∨ 𝐵))))
7271ralrimiv 2994 . 2 ((𝐴 + 𝐵) = (𝐴 𝐵) → ∀𝑥C (𝐵𝑥 → (𝑥 ∩ (𝐴 𝐵)) ⊆ ((𝑥𝐴) ∨ 𝐵)))
73 dmdbr2 29290 . . 3 ((𝐴C𝐵C ) → (𝐴 𝑀* 𝐵 ↔ ∀𝑥C (𝐵𝑥 → (𝑥 ∩ (𝐴 𝐵)) ⊆ ((𝑥𝐴) ∨ 𝐵))))
744, 5, 73mp2an 708 . 2 (𝐴 𝑀* 𝐵 ↔ ∀𝑥C (𝐵𝑥 → (𝑥 ∩ (𝐴 𝐵)) ⊆ ((𝑥𝐴) ∨ 𝐵)))
7572, 74sylibr 224 1 ((𝐴 + 𝐵) = (𝐴 𝐵) → 𝐴 𝑀* 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wral 2941  wrex 2942  cin 3606  wss 3607   class class class wbr 4685  (class class class)co 6690  chil 27904   + cva 27905   cmv 27910   S csh 27913   C cch 27914   + cph 27916   chj 27918   𝑀* cdmd 27952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cc 9295  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054  ax-hilex 27984  ax-hfvadd 27985  ax-hvcom 27986  ax-hvass 27987  ax-hv0cl 27988  ax-hvaddid 27989  ax-hfvmul 27990  ax-hvmulid 27991  ax-hvmulass 27992  ax-hvdistr1 27993  ax-hvdistr2 27994  ax-hvmul0 27995  ax-hfi 28064  ax-his1 28067  ax-his2 28068  ax-his3 28069  ax-his4 28070  ax-hcompl 28187
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-omul 7610  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-acn 8806  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-rlim 14264  df-sum 14461  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-cn 21079  df-cnp 21080  df-lm 21081  df-haus 21167  df-tx 21413  df-hmeo 21606  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-xms 22172  df-ms 22173  df-tms 22174  df-cfil 23099  df-cau 23100  df-cmet 23101  df-grpo 27475  df-gid 27476  df-ginv 27477  df-gdiv 27478  df-ablo 27527  df-vc 27542  df-nv 27575  df-va 27578  df-ba 27579  df-sm 27580  df-0v 27581  df-vs 27582  df-nmcv 27583  df-ims 27584  df-dip 27684  df-ssp 27705  df-ph 27796  df-cbn 27847  df-hnorm 27953  df-hba 27954  df-hvsub 27956  df-hlim 27957  df-hcau 27958  df-sh 28192  df-ch 28206  df-oc 28237  df-ch0 28238  df-shs 28295  df-chj 28297  df-dmd 29268
This theorem is referenced by:  cmmdi  29403  sumdmdi  29407
  Copyright terms: Public domain W3C validator