![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sucprc | Structured version Visualization version GIF version |
Description: A proper class is its own successor. (Contributed by NM, 3-Apr-1995.) |
Ref | Expression |
---|---|
sucprc | ⊢ (¬ 𝐴 ∈ V → suc 𝐴 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snprc 4285 | . . . 4 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
2 | 1 | biimpi 206 | . . 3 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
3 | 2 | uneq2d 3800 | . 2 ⊢ (¬ 𝐴 ∈ V → (𝐴 ∪ {𝐴}) = (𝐴 ∪ ∅)) |
4 | df-suc 5767 | . 2 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
5 | un0 4000 | . . 3 ⊢ (𝐴 ∪ ∅) = 𝐴 | |
6 | 5 | eqcomi 2660 | . 2 ⊢ 𝐴 = (𝐴 ∪ ∅) |
7 | 3, 4, 6 | 3eqtr4g 2710 | 1 ⊢ (¬ 𝐴 ∈ V → suc 𝐴 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1523 ∈ wcel 2030 Vcvv 3231 ∪ cun 3605 ∅c0 3948 {csn 4210 suc csuc 5763 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-v 3233 df-dif 3610 df-un 3612 df-nul 3949 df-sn 4211 df-suc 5767 |
This theorem is referenced by: nsuceq0 5843 sucon 7050 ordsuc 7056 sucprcreg 8544 suc11reg 8554 |
Copyright terms: Public domain | W3C validator |