![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sucon | Structured version Visualization version GIF version |
Description: The class of all ordinal numbers is its own successor. (Contributed by NM, 12-Sep-2003.) |
Ref | Expression |
---|---|
sucon | ⊢ suc On = On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onprc 7145 | . 2 ⊢ ¬ On ∈ V | |
2 | sucprc 5957 | . 2 ⊢ (¬ On ∈ V → suc On = On) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ suc On = On |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1628 ∈ wcel 2135 Vcvv 3336 Oncon0 5880 suc csuc 5882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-8 2137 ax-9 2144 ax-10 2164 ax-11 2179 ax-12 2192 ax-13 2387 ax-ext 2736 ax-sep 4929 ax-nul 4937 ax-pr 5051 ax-un 7110 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1631 df-ex 1850 df-nf 1855 df-sb 2043 df-eu 2607 df-mo 2608 df-clab 2743 df-cleq 2749 df-clel 2752 df-nfc 2887 df-ne 2929 df-ral 3051 df-rex 3052 df-rab 3055 df-v 3338 df-sbc 3573 df-dif 3714 df-un 3716 df-in 3718 df-ss 3725 df-pss 3727 df-nul 4055 df-if 4227 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4585 df-br 4801 df-opab 4861 df-tr 4901 df-eprel 5175 df-po 5183 df-so 5184 df-fr 5221 df-we 5223 df-ord 5883 df-on 5884 df-suc 5886 |
This theorem is referenced by: ordunisuc 7193 |
Copyright terms: Public domain | W3C validator |