![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sucidVD | Structured version Visualization version GIF version |
Description: A set belongs to its successor. The following User's Proof is a
Virtual Deduction proof completed automatically by the tools
program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2
and Norm Megill's Metamath Proof Assistant.
sucid 5917 is sucidVD 39524 without virtual deductions and was automatically
derived from sucidVD 39524.
|
Ref | Expression |
---|---|
sucidVD.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
sucidVD | ⊢ 𝐴 ∈ suc 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sucidVD.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | 1 | snid 4316 | . . 3 ⊢ 𝐴 ∈ {𝐴} |
3 | elun2 3889 | . . 3 ⊢ (𝐴 ∈ {𝐴} → 𝐴 ∈ (𝐴 ∪ {𝐴})) | |
4 | 2, 3 | e0a 39418 | . 2 ⊢ 𝐴 ∈ (𝐴 ∪ {𝐴}) |
5 | df-suc 5842 | . 2 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
6 | 4, 5 | eleqtrri 2802 | 1 ⊢ 𝐴 ∈ suc 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2103 Vcvv 3304 ∪ cun 3678 {csn 4285 suc csuc 5838 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-v 3306 df-un 3685 df-in 3687 df-ss 3694 df-sn 4286 df-suc 5842 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |