![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sucexb | Structured version Visualization version GIF version |
Description: A successor exists iff its class argument exists. (Contributed by NM, 22-Jun-1998.) |
Ref | Expression |
---|---|
sucexb | ⊢ (𝐴 ∈ V ↔ suc 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unexb 7075 | . 2 ⊢ ((𝐴 ∈ V ∧ {𝐴} ∈ V) ↔ (𝐴 ∪ {𝐴}) ∈ V) | |
2 | snex 5013 | . . 3 ⊢ {𝐴} ∈ V | |
3 | 2 | biantru 527 | . 2 ⊢ (𝐴 ∈ V ↔ (𝐴 ∈ V ∧ {𝐴} ∈ V)) |
4 | df-suc 5842 | . . 3 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
5 | 4 | eleq1i 2794 | . 2 ⊢ (suc 𝐴 ∈ V ↔ (𝐴 ∪ {𝐴}) ∈ V) |
6 | 1, 3, 5 | 3bitr4i 292 | 1 ⊢ (𝐴 ∈ V ↔ suc 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 ∈ wcel 2103 Vcvv 3304 ∪ cun 3678 {csn 4285 suc csuc 5838 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pr 5011 ax-un 7066 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-rex 3020 df-v 3306 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-nul 4024 df-sn 4286 df-pr 4288 df-uni 4545 df-suc 5842 |
This theorem is referenced by: sucexg 7127 sucelon 7134 ordsucelsuc 7139 oeordi 7787 suc11reg 8629 rankxpsuc 8858 isf32lem2 9289 limsucncmpi 32671 |
Copyright terms: Public domain | W3C validator |