![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sucelon | Structured version Visualization version GIF version |
Description: The successor of an ordinal number is an ordinal number. (Contributed by NM, 9-Sep-2003.) |
Ref | Expression |
---|---|
sucelon | ⊢ (𝐴 ∈ On ↔ suc 𝐴 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordsuc 7056 | . . 3 ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) | |
2 | sucexb 7051 | . . 3 ⊢ (𝐴 ∈ V ↔ suc 𝐴 ∈ V) | |
3 | 1, 2 | anbi12i 733 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐴 ∈ V) ↔ (Ord suc 𝐴 ∧ suc 𝐴 ∈ V)) |
4 | elon2 5772 | . 2 ⊢ (𝐴 ∈ On ↔ (Ord 𝐴 ∧ 𝐴 ∈ V)) | |
5 | elon2 5772 | . 2 ⊢ (suc 𝐴 ∈ On ↔ (Ord suc 𝐴 ∧ suc 𝐴 ∈ V)) | |
6 | 3, 4, 5 | 3bitr4i 292 | 1 ⊢ (𝐴 ∈ On ↔ suc 𝐴 ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 ∈ wcel 2030 Vcvv 3231 Ord word 5760 Oncon0 5761 suc csuc 5763 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-tr 4786 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-ord 5764 df-on 5765 df-suc 5767 |
This theorem is referenced by: onsucmin 7063 tfindsg2 7103 oaordi 7671 oalimcl 7685 omlimcl 7703 omeulem1 7707 oeordsuc 7719 infensuc 8179 cantnflem1b 8621 cantnflem1 8624 r1ordg 8679 alephnbtwn 8932 cfsuc 9117 alephsuc3 9440 alephreg 9442 bdayimaon 31968 nosupbnd1lem1 31979 nosupbnd1 31985 nosupbnd2lem1 31986 nosupbnd2 31987 |
Copyright terms: Public domain | W3C validator |