MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sucel Structured version   Visualization version   GIF version

Theorem sucel 5836
Description: Membership of a successor in another class. (Contributed by NM, 29-Jun-2004.)
Assertion
Ref Expression
sucel (suc 𝐴𝐵 ↔ ∃𝑥𝐵𝑦(𝑦𝑥 ↔ (𝑦𝐴𝑦 = 𝐴)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem sucel
StepHypRef Expression
1 risset 3091 . 2 (suc 𝐴𝐵 ↔ ∃𝑥𝐵 𝑥 = suc 𝐴)
2 dfcleq 2645 . . . 4 (𝑥 = suc 𝐴 ↔ ∀𝑦(𝑦𝑥𝑦 ∈ suc 𝐴))
3 vex 3234 . . . . . . 7 𝑦 ∈ V
43elsuc 5832 . . . . . 6 (𝑦 ∈ suc 𝐴 ↔ (𝑦𝐴𝑦 = 𝐴))
54bibi2i 326 . . . . 5 ((𝑦𝑥𝑦 ∈ suc 𝐴) ↔ (𝑦𝑥 ↔ (𝑦𝐴𝑦 = 𝐴)))
65albii 1787 . . . 4 (∀𝑦(𝑦𝑥𝑦 ∈ suc 𝐴) ↔ ∀𝑦(𝑦𝑥 ↔ (𝑦𝐴𝑦 = 𝐴)))
72, 6bitri 264 . . 3 (𝑥 = suc 𝐴 ↔ ∀𝑦(𝑦𝑥 ↔ (𝑦𝐴𝑦 = 𝐴)))
87rexbii 3070 . 2 (∃𝑥𝐵 𝑥 = suc 𝐴 ↔ ∃𝑥𝐵𝑦(𝑦𝑥 ↔ (𝑦𝐴𝑦 = 𝐴)))
91, 8bitri 264 1 (suc 𝐴𝐵 ↔ ∃𝑥𝐵𝑦(𝑦𝑥 ↔ (𝑦𝐴𝑦 = 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wo 382  wal 1521   = wceq 1523  wcel 2030  wrex 2942  suc csuc 5763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-rex 2947  df-v 3233  df-un 3612  df-sn 4211  df-suc 5767
This theorem is referenced by:  axinf2  8575  zfinf2  8577
  Copyright terms: Public domain W3C validator