![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subval | Structured version Visualization version GIF version |
Description: Value of subtraction, which is the (unique) element 𝑥 such that 𝐵 + 𝑥 = 𝐴. (Contributed by NM, 4-Aug-2007.) (Revised by Mario Carneiro, 2-Nov-2013.) |
Ref | Expression |
---|---|
subval | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) = (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2782 | . . 3 ⊢ (𝑦 = 𝐴 → ((𝑧 + 𝑥) = 𝑦 ↔ (𝑧 + 𝑥) = 𝐴)) | |
2 | 1 | riotabidv 6756 | . 2 ⊢ (𝑦 = 𝐴 → (℩𝑥 ∈ ℂ (𝑧 + 𝑥) = 𝑦) = (℩𝑥 ∈ ℂ (𝑧 + 𝑥) = 𝐴)) |
3 | oveq1 6800 | . . . 4 ⊢ (𝑧 = 𝐵 → (𝑧 + 𝑥) = (𝐵 + 𝑥)) | |
4 | 3 | eqeq1d 2773 | . . 3 ⊢ (𝑧 = 𝐵 → ((𝑧 + 𝑥) = 𝐴 ↔ (𝐵 + 𝑥) = 𝐴)) |
5 | 4 | riotabidv 6756 | . 2 ⊢ (𝑧 = 𝐵 → (℩𝑥 ∈ ℂ (𝑧 + 𝑥) = 𝐴) = (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴)) |
6 | df-sub 10470 | . 2 ⊢ − = (𝑦 ∈ ℂ, 𝑧 ∈ ℂ ↦ (℩𝑥 ∈ ℂ (𝑧 + 𝑥) = 𝑦)) | |
7 | riotaex 6758 | . 2 ⊢ (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) ∈ V | |
8 | 2, 5, 6, 7 | ovmpt2 6943 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) = (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ℩crio 6753 (class class class)co 6793 ℂcc 10136 + caddc 10141 − cmin 10468 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-iota 5994 df-fun 6033 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-sub 10470 |
This theorem is referenced by: subcl 10482 subf 10485 subadd 10486 |
Copyright terms: Public domain | W3C validator |