MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subumgr Structured version   Visualization version   GIF version

Theorem subumgr 26225
Description: A subgraph of a multigraph is a multigraph. (Contributed by AV, 26-Nov-2020.)
Assertion
Ref Expression
subumgr ((𝐺 ∈ UMGraph ∧ 𝑆 SubGraph 𝐺) → 𝑆 ∈ UMGraph)

Proof of Theorem subumgr
Dummy variables 𝑥 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2651 . . . 4 (Vtx‘𝑆) = (Vtx‘𝑆)
2 eqid 2651 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2651 . . . 4 (iEdg‘𝑆) = (iEdg‘𝑆)
4 eqid 2651 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
5 eqid 2651 . . . 4 (Edg‘𝑆) = (Edg‘𝑆)
61, 2, 3, 4, 5subgrprop2 26211 . . 3 (𝑆 SubGraph 𝐺 → ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)))
7 umgruhgr 26044 . . . . . . . . . 10 (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph)
8 subgruhgrfun 26219 . . . . . . . . . 10 ((𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺) → Fun (iEdg‘𝑆))
97, 8sylan 487 . . . . . . . . 9 ((𝐺 ∈ UMGraph ∧ 𝑆 SubGraph 𝐺) → Fun (iEdg‘𝑆))
109ancoms 468 . . . . . . . 8 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph) → Fun (iEdg‘𝑆))
11 funfn 5956 . . . . . . . 8 (Fun (iEdg‘𝑆) ↔ (iEdg‘𝑆) Fn dom (iEdg‘𝑆))
1210, 11sylib 208 . . . . . . 7 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph) → (iEdg‘𝑆) Fn dom (iEdg‘𝑆))
1312adantl 481 . . . . . 6 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UMGraph)) → (iEdg‘𝑆) Fn dom (iEdg‘𝑆))
14 simplrl 817 . . . . . . . . 9 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UMGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → 𝑆 SubGraph 𝐺)
15 simplrr 818 . . . . . . . . 9 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UMGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → 𝐺 ∈ UMGraph)
16 simpr 476 . . . . . . . . 9 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UMGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → 𝑥 ∈ dom (iEdg‘𝑆))
171, 3subumgredg2 26222 . . . . . . . . 9 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝑆)‘𝑥) ∈ {𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (#‘𝑒) = 2})
1814, 15, 16, 17syl3anc 1366 . . . . . . . 8 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UMGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝑆)‘𝑥) ∈ {𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (#‘𝑒) = 2})
1918ralrimiva 2995 . . . . . . 7 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UMGraph)) → ∀𝑥 ∈ dom (iEdg‘𝑆)((iEdg‘𝑆)‘𝑥) ∈ {𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (#‘𝑒) = 2})
20 fnfvrnss 6430 . . . . . . 7 (((iEdg‘𝑆) Fn dom (iEdg‘𝑆) ∧ ∀𝑥 ∈ dom (iEdg‘𝑆)((iEdg‘𝑆)‘𝑥) ∈ {𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (#‘𝑒) = 2}) → ran (iEdg‘𝑆) ⊆ {𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (#‘𝑒) = 2})
2113, 19, 20syl2anc 694 . . . . . 6 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UMGraph)) → ran (iEdg‘𝑆) ⊆ {𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (#‘𝑒) = 2})
22 df-f 5930 . . . . . 6 ((iEdg‘𝑆):dom (iEdg‘𝑆)⟶{𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (#‘𝑒) = 2} ↔ ((iEdg‘𝑆) Fn dom (iEdg‘𝑆) ∧ ran (iEdg‘𝑆) ⊆ {𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (#‘𝑒) = 2}))
2313, 21, 22sylanbrc 699 . . . . 5 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UMGraph)) → (iEdg‘𝑆):dom (iEdg‘𝑆)⟶{𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (#‘𝑒) = 2})
24 subgrv 26207 . . . . . . 7 (𝑆 SubGraph 𝐺 → (𝑆 ∈ V ∧ 𝐺 ∈ V))
251, 3isumgrs 26036 . . . . . . . 8 (𝑆 ∈ V → (𝑆 ∈ UMGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶{𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (#‘𝑒) = 2}))
2625adantr 480 . . . . . . 7 ((𝑆 ∈ V ∧ 𝐺 ∈ V) → (𝑆 ∈ UMGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶{𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (#‘𝑒) = 2}))
2724, 26syl 17 . . . . . 6 (𝑆 SubGraph 𝐺 → (𝑆 ∈ UMGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶{𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (#‘𝑒) = 2}))
2827ad2antrl 764 . . . . 5 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UMGraph)) → (𝑆 ∈ UMGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶{𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (#‘𝑒) = 2}))
2923, 28mpbird 247 . . . 4 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UMGraph)) → 𝑆 ∈ UMGraph)
3029ex 449 . . 3 (((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) → ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph) → 𝑆 ∈ UMGraph))
316, 30syl 17 . 2 (𝑆 SubGraph 𝐺 → ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph) → 𝑆 ∈ UMGraph))
3231anabsi8 878 1 ((𝐺 ∈ UMGraph ∧ 𝑆 SubGraph 𝐺) → 𝑆 ∈ UMGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wral 2941  {crab 2945  Vcvv 3231  wss 3607  𝒫 cpw 4191   class class class wbr 4685  dom cdm 5143  ran crn 5144  Fun wfun 5920   Fn wfn 5921  wf 5922  cfv 5926  2c2 11108  #chash 13157  Vtxcvtx 25919  iEdgciedg 25920  Edgcedg 25984  UHGraphcuhgr 25996  UMGraphcumgr 26021   SubGraph csubgr 26204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-hash 13158  df-edg 25985  df-uhgr 25998  df-upgr 26022  df-umgr 26023  df-subgr 26205
This theorem is referenced by:  umgrspan  26231
  Copyright terms: Public domain W3C validator