MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subsubrg Structured version   Visualization version   GIF version

Theorem subsubrg 18854
Description: A subring of a subring is a subring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypothesis
Ref Expression
subsubrg.s 𝑆 = (𝑅s 𝐴)
Assertion
Ref Expression
subsubrg (𝐴 ∈ (SubRing‘𝑅) → (𝐵 ∈ (SubRing‘𝑆) ↔ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)))

Proof of Theorem subsubrg
StepHypRef Expression
1 subrgrcl 18833 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
21adantr 480 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → 𝑅 ∈ Ring)
3 eqid 2651 . . . . . . . . . 10 (Base‘𝑆) = (Base‘𝑆)
43subrgss 18829 . . . . . . . . 9 (𝐵 ∈ (SubRing‘𝑆) → 𝐵 ⊆ (Base‘𝑆))
54adantl 481 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → 𝐵 ⊆ (Base‘𝑆))
6 subsubrg.s . . . . . . . . . 10 𝑆 = (𝑅s 𝐴)
76subrgbas 18837 . . . . . . . . 9 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆))
87adantr 480 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → 𝐴 = (Base‘𝑆))
95, 8sseqtr4d 3675 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → 𝐵𝐴)
106oveq1i 6700 . . . . . . . 8 (𝑆s 𝐵) = ((𝑅s 𝐴) ↾s 𝐵)
11 ressabs 15986 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴) → ((𝑅s 𝐴) ↾s 𝐵) = (𝑅s 𝐵))
1210, 11syl5eq 2697 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴) → (𝑆s 𝐵) = (𝑅s 𝐵))
139, 12syldan 486 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → (𝑆s 𝐵) = (𝑅s 𝐵))
14 eqid 2651 . . . . . . . 8 (𝑆s 𝐵) = (𝑆s 𝐵)
1514subrgring 18831 . . . . . . 7 (𝐵 ∈ (SubRing‘𝑆) → (𝑆s 𝐵) ∈ Ring)
1615adantl 481 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → (𝑆s 𝐵) ∈ Ring)
1713, 16eqeltrrd 2731 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → (𝑅s 𝐵) ∈ Ring)
182, 17jca 553 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → (𝑅 ∈ Ring ∧ (𝑅s 𝐵) ∈ Ring))
19 eqid 2651 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
2019subrgss 18829 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅))
2120adantr 480 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → 𝐴 ⊆ (Base‘𝑅))
229, 21sstrd 3646 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → 𝐵 ⊆ (Base‘𝑅))
23 eqid 2651 . . . . . . . 8 (1r𝑅) = (1r𝑅)
246, 23subrg1 18838 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → (1r𝑅) = (1r𝑆))
2524adantr 480 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → (1r𝑅) = (1r𝑆))
26 eqid 2651 . . . . . . . 8 (1r𝑆) = (1r𝑆)
2726subrg1cl 18836 . . . . . . 7 (𝐵 ∈ (SubRing‘𝑆) → (1r𝑆) ∈ 𝐵)
2827adantl 481 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → (1r𝑆) ∈ 𝐵)
2925, 28eqeltrd 2730 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → (1r𝑅) ∈ 𝐵)
3022, 29jca 553 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → (𝐵 ⊆ (Base‘𝑅) ∧ (1r𝑅) ∈ 𝐵))
3119, 23issubrg 18828 . . . 4 (𝐵 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅s 𝐵) ∈ Ring) ∧ (𝐵 ⊆ (Base‘𝑅) ∧ (1r𝑅) ∈ 𝐵)))
3218, 30, 31sylanbrc 699 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → 𝐵 ∈ (SubRing‘𝑅))
3332, 9jca 553 . 2 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴))
346subrgring 18831 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring)
3534adantr 480 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)) → 𝑆 ∈ Ring)
3612adantrl 752 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)) → (𝑆s 𝐵) = (𝑅s 𝐵))
37 eqid 2651 . . . . . . 7 (𝑅s 𝐵) = (𝑅s 𝐵)
3837subrgring 18831 . . . . . 6 (𝐵 ∈ (SubRing‘𝑅) → (𝑅s 𝐵) ∈ Ring)
3938ad2antrl 764 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)) → (𝑅s 𝐵) ∈ Ring)
4036, 39eqeltrd 2730 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)) → (𝑆s 𝐵) ∈ Ring)
4135, 40jca 553 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)) → (𝑆 ∈ Ring ∧ (𝑆s 𝐵) ∈ Ring))
42 simprr 811 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)) → 𝐵𝐴)
437adantr 480 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)) → 𝐴 = (Base‘𝑆))
4442, 43sseqtrd 3674 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)) → 𝐵 ⊆ (Base‘𝑆))
4524adantr 480 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)) → (1r𝑅) = (1r𝑆))
4623subrg1cl 18836 . . . . . 6 (𝐵 ∈ (SubRing‘𝑅) → (1r𝑅) ∈ 𝐵)
4746ad2antrl 764 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)) → (1r𝑅) ∈ 𝐵)
4845, 47eqeltrrd 2731 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)) → (1r𝑆) ∈ 𝐵)
4944, 48jca 553 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)) → (𝐵 ⊆ (Base‘𝑆) ∧ (1r𝑆) ∈ 𝐵))
503, 26issubrg 18828 . . 3 (𝐵 ∈ (SubRing‘𝑆) ↔ ((𝑆 ∈ Ring ∧ (𝑆s 𝐵) ∈ Ring) ∧ (𝐵 ⊆ (Base‘𝑆) ∧ (1r𝑆) ∈ 𝐵)))
5141, 49, 50sylanbrc 699 . 2 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)) → 𝐵 ∈ (SubRing‘𝑆))
5233, 51impbida 895 1 (𝐴 ∈ (SubRing‘𝑅) → (𝐵 ∈ (SubRing‘𝑆) ↔ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wss 3607  cfv 5926  (class class class)co 6690  Basecbs 15904  s cress 15905  1rcur 18547  Ringcrg 18593  SubRingcsubrg 18824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-0g 16149  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-subg 17638  df-mgp 18536  df-ur 18548  df-ring 18595  df-subrg 18826
This theorem is referenced by:  subsubrg2  18855  subrgmpl  19508  mplbas2  19518  mplind  19550  zringunit  19884  rzgrp  24345
  Copyright terms: Public domain W3C validator