MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subsubd Structured version   Visualization version   GIF version

Theorem subsubd 10458
Description: Law for double subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
negidd.1 (𝜑𝐴 ∈ ℂ)
pncand.2 (𝜑𝐵 ∈ ℂ)
subaddd.3 (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
subsubd (𝜑 → (𝐴 − (𝐵𝐶)) = ((𝐴𝐵) + 𝐶))

Proof of Theorem subsubd
StepHypRef Expression
1 negidd.1 . 2 (𝜑𝐴 ∈ ℂ)
2 pncand.2 . 2 (𝜑𝐵 ∈ ℂ)
3 subaddd.3 . 2 (𝜑𝐶 ∈ ℂ)
4 subsub 10349 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 − (𝐵𝐶)) = ((𝐴𝐵) + 𝐶))
51, 2, 3, 4syl3anc 1366 1 (𝜑 → (𝐴 − (𝐵𝐶)) = ((𝐴𝐵) + 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1523  wcel 2030  (class class class)co 6690  cc 9972   + caddc 9977  cmin 10304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-ltxr 10117  df-sub 10306
This theorem is referenced by:  uzsubsubfz  12401  bcm1k  13142  crre  13898  imval2  13935  cvgcmp  14592  arisum2  14637  mertenslem1  14660  binomfallfaclem2  14815  fallfacval4  14818  bpolydiflem  14829  bpoly3  14833  bpoly4  14834  cos01bnd  14960  prmdiv  15537  vfermltlALT  15554  dvle  23815  dvfsumlem2  23835  efif1olem2  24334  affineequiv  24598  heron  24610  dquart  24625  quartlem1  24629  acosneg  24659  efiatan2  24689  atans2  24703  birthdaylem2  24724  lgamcvg2  24826  wilthlem2  24840  basellem5  24856  gausslemma2dlem1a  25135  pntrlog2bndlem4  25314  pntrlog2bndlem5  25315  pntrlog2bndlem6  25317  colinearalglem2  25832  axsegconlem9  25850  clwlkclwwlklem2a1  26958  clwlkclwwlklem2a4  26963  clwwlkext2edg  27020  extwwlkfablem1OLD  27323  2clwwlk2clwwlklem2lem2  27329  numclwlk1lem2foalem  27341  numclwlk1lem2fo  27348  subfacp1lem5  31292  poimirlem29  33568  itg2addnclem  33591  itg2addnclem3  33593  rmspecsqrtnq  37787  rmspecsqrtnqOLD  37788  sub31  39817  infleinflem2  39900  stoweidlem26  40561  fourierdlem19  40661  fourierdlem63  40704  fourierdlem107  40748  ovolval5lem1  41187  fmtnorec4  41786
  Copyright terms: Public domain W3C validator