![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subsq | Structured version Visualization version GIF version |
Description: Factor the difference of two squares. (Contributed by NM, 21-Feb-2008.) |
Ref | Expression |
---|---|
subsq | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴 − 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 468 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ) | |
2 | simpr 471 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ) | |
3 | subcl 10481 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) | |
4 | 1, 2, 3 | adddird 10266 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) · (𝐴 − 𝐵)) = ((𝐴 · (𝐴 − 𝐵)) + (𝐵 · (𝐴 − 𝐵)))) |
5 | subdi 10664 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · (𝐴 − 𝐵)) = ((𝐴 · 𝐴) − (𝐴 · 𝐵))) | |
6 | 5 | 3anidm12 1528 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · (𝐴 − 𝐵)) = ((𝐴 · 𝐴) − (𝐴 · 𝐵))) |
7 | sqval 13128 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (𝐴↑2) = (𝐴 · 𝐴)) | |
8 | 7 | adantr 466 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑2) = (𝐴 · 𝐴)) |
9 | 8 | oveq1d 6807 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) − (𝐴 · 𝐵)) = ((𝐴 · 𝐴) − (𝐴 · 𝐵))) |
10 | 6, 9 | eqtr4d 2807 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · (𝐴 − 𝐵)) = ((𝐴↑2) − (𝐴 · 𝐵))) |
11 | 2, 1, 2 | subdid 10687 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 · (𝐴 − 𝐵)) = ((𝐵 · 𝐴) − (𝐵 · 𝐵))) |
12 | mulcom 10223 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | |
13 | sqval 13128 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → (𝐵↑2) = (𝐵 · 𝐵)) | |
14 | 13 | adantl 467 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑2) = (𝐵 · 𝐵)) |
15 | 12, 14 | oveq12d 6810 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) − (𝐵↑2)) = ((𝐵 · 𝐴) − (𝐵 · 𝐵))) |
16 | 11, 15 | eqtr4d 2807 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 · (𝐴 − 𝐵)) = ((𝐴 · 𝐵) − (𝐵↑2))) |
17 | 10, 16 | oveq12d 6810 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · (𝐴 − 𝐵)) + (𝐵 · (𝐴 − 𝐵))) = (((𝐴↑2) − (𝐴 · 𝐵)) + ((𝐴 · 𝐵) − (𝐵↑2)))) |
18 | sqcl 13131 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ) | |
19 | 18 | adantr 466 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑2) ∈ ℂ) |
20 | mulcl 10221 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) | |
21 | sqcl 13131 | . . . 4 ⊢ (𝐵 ∈ ℂ → (𝐵↑2) ∈ ℂ) | |
22 | 21 | adantl 467 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑2) ∈ ℂ) |
23 | 19, 20, 22 | npncand 10617 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) − (𝐴 · 𝐵)) + ((𝐴 · 𝐵) − (𝐵↑2))) = ((𝐴↑2) − (𝐵↑2))) |
24 | 4, 17, 23 | 3eqtrrd 2809 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴 − 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1630 ∈ wcel 2144 (class class class)co 6792 ℂcc 10135 + caddc 10140 · cmul 10142 − cmin 10467 2c2 11271 ↑cexp 13066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-2nd 7315 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-er 7895 df-en 8109 df-dom 8110 df-sdom 8111 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-nn 11222 df-2 11280 df-n0 11494 df-z 11579 df-uz 11888 df-seq 13008 df-exp 13067 |
This theorem is referenced by: subsq2 13179 subsqi 13181 pythagtriplem4 15730 pythagtriplem6 15732 pythagtriplem7 15733 pythagtriplem12 15737 pythagtriplem14 15739 pythagtriplem16 15741 difsqpwdvds 15797 4sqlem8 15855 4sqlem10 15857 4sqlem11 15865 chordthmlem4 24782 heron 24785 dcubic2 24791 cubic 24796 dquart 24800 asinlem2 24816 asinsin 24839 efiatan2 24864 atans2 24878 dvatan 24882 wilthlem1 25014 lgslem1 25242 lgsqrlem2 25292 2sqlem4 25366 2sqblem 25376 rplogsumlem1 25393 2sqmod 29982 pellexlem2 37913 pell1234qrne0 37936 pell1234qrreccl 37937 pell1234qrmulcl 37938 pell14qrdich 37952 rmxyneg 38004 stoweidlem1 40729 |
Copyright terms: Public domain | W3C validator |