![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subrgring | Structured version Visualization version GIF version |
Description: A subring is a ring. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
Ref | Expression |
---|---|
subrgring.1 | ⊢ 𝑆 = (𝑅 ↾s 𝐴) |
Ref | Expression |
---|---|
subrgring | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrgring.1 | . 2 ⊢ 𝑆 = (𝑅 ↾s 𝐴) | |
2 | eqid 2771 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | eqid 2771 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
4 | 2, 3 | issubrg 18990 | . . . 4 ⊢ (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅 ↾s 𝐴) ∈ Ring) ∧ (𝐴 ⊆ (Base‘𝑅) ∧ (1r‘𝑅) ∈ 𝐴))) |
5 | 4 | simplbi 485 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑅 ∈ Ring ∧ (𝑅 ↾s 𝐴) ∈ Ring)) |
6 | 5 | simprd 483 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑅 ↾s 𝐴) ∈ Ring) |
7 | 1, 6 | syl5eqel 2854 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ⊆ wss 3723 ‘cfv 6031 (class class class)co 6793 Basecbs 16064 ↾s cress 16065 1rcur 18709 Ringcrg 18755 SubRingcsubrg 18986 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fv 6039 df-ov 6796 df-subrg 18988 |
This theorem is referenced by: subrgcrng 18994 subrgsubg 18996 subrg1 19000 subrgmcl 19002 subrgsubm 19003 subrguss 19005 subrginv 19006 subrgunit 19008 subrgugrp 19009 issubdrg 19015 subsubrg 19016 resrhm 19019 abvres 19049 sralmod 19402 subrgnzr 19483 issubassa 19539 subrgpsr 19634 mplring 19667 subrgmvrf 19677 subrgascl 19713 subrgasclcl 19714 evlssca 19737 evlsvar 19738 mpfconst 19745 mpfproj 19746 mpfsubrg 19747 gsumply1subr 19819 ply1ring 19833 evls1sca 19903 evls1gsumadd 19904 evls1varpw 19906 gzrngunitlem 20026 gzrngunit 20027 dmatcrng 20526 scmatcrng 20545 scmatsgrp1 20546 scmatsrng1 20547 scmatmhm 20558 scmatrhm 20559 scmatrngiso 20560 m2cpmrhm 20771 isclmp 23116 reefgim 24424 amgmlem 24937 amgmwlem 43079 |
Copyright terms: Public domain | W3C validator |