MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgint Structured version   Visualization version   GIF version

Theorem subrgint 19032
Description: The intersection of a nonempty collection of subrings is a subring. (Contributed by Stefan O'Rear, 30-Nov-2014.) (Revised by Mario Carneiro, 7-Dec-2014.)
Assertion
Ref Expression
subrgint ((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (SubRing‘𝑅))

Proof of Theorem subrgint
Dummy variables 𝑥 𝑟 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgsubg 19016 . . . . 5 (𝑟 ∈ (SubRing‘𝑅) → 𝑟 ∈ (SubGrp‘𝑅))
21ssriv 3762 . . . 4 (SubRing‘𝑅) ⊆ (SubGrp‘𝑅)
3 sstr 3766 . . . 4 ((𝑆 ⊆ (SubRing‘𝑅) ∧ (SubRing‘𝑅) ⊆ (SubGrp‘𝑅)) → 𝑆 ⊆ (SubGrp‘𝑅))
42, 3mpan2 672 . . 3 (𝑆 ⊆ (SubRing‘𝑅) → 𝑆 ⊆ (SubGrp‘𝑅))
5 subgint 17846 . . 3 ((𝑆 ⊆ (SubGrp‘𝑅) ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (SubGrp‘𝑅))
64, 5sylan 570 . 2 ((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (SubGrp‘𝑅))
7 ssel2 3753 . . . . . 6 ((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑟𝑆) → 𝑟 ∈ (SubRing‘𝑅))
87adantlr 695 . . . . 5 (((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) ∧ 𝑟𝑆) → 𝑟 ∈ (SubRing‘𝑅))
9 eqid 2774 . . . . . 6 (1r𝑅) = (1r𝑅)
109subrg1cl 19018 . . . . 5 (𝑟 ∈ (SubRing‘𝑅) → (1r𝑅) ∈ 𝑟)
118, 10syl 17 . . . 4 (((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) ∧ 𝑟𝑆) → (1r𝑅) ∈ 𝑟)
1211ralrimiva 3118 . . 3 ((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) → ∀𝑟𝑆 (1r𝑅) ∈ 𝑟)
13 fvex 6359 . . . 4 (1r𝑅) ∈ V
1413elint2 4629 . . 3 ((1r𝑅) ∈ 𝑆 ↔ ∀𝑟𝑆 (1r𝑅) ∈ 𝑟)
1512, 14sylibr 225 . 2 ((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) → (1r𝑅) ∈ 𝑆)
168adantlr 695 . . . . . 6 ((((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑟𝑆) → 𝑟 ∈ (SubRing‘𝑅))
17 simprl 776 . . . . . . 7 (((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) → 𝑥 𝑆)
18 elinti 4631 . . . . . . . 8 (𝑥 𝑆 → (𝑟𝑆𝑥𝑟))
1918imp 394 . . . . . . 7 ((𝑥 𝑆𝑟𝑆) → 𝑥𝑟)
2017, 19sylan 570 . . . . . 6 ((((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑟𝑆) → 𝑥𝑟)
21 simprr 778 . . . . . . 7 (((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) → 𝑦 𝑆)
22 elinti 4631 . . . . . . . 8 (𝑦 𝑆 → (𝑟𝑆𝑦𝑟))
2322imp 394 . . . . . . 7 ((𝑦 𝑆𝑟𝑆) → 𝑦𝑟)
2421, 23sylan 570 . . . . . 6 ((((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑟𝑆) → 𝑦𝑟)
25 eqid 2774 . . . . . . 7 (.r𝑅) = (.r𝑅)
2625subrgmcl 19022 . . . . . 6 ((𝑟 ∈ (SubRing‘𝑅) ∧ 𝑥𝑟𝑦𝑟) → (𝑥(.r𝑅)𝑦) ∈ 𝑟)
2716, 20, 24, 26syl3anc 1480 . . . . 5 ((((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑟𝑆) → (𝑥(.r𝑅)𝑦) ∈ 𝑟)
2827ralrimiva 3118 . . . 4 (((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) → ∀𝑟𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑟)
29 ovex 6844 . . . . 5 (𝑥(.r𝑅)𝑦) ∈ V
3029elint2 4629 . . . 4 ((𝑥(.r𝑅)𝑦) ∈ 𝑆 ↔ ∀𝑟𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑟)
3128, 30sylibr 225 . . 3 (((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) → (𝑥(.r𝑅)𝑦) ∈ 𝑆)
3231ralrimivva 3123 . 2 ((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) → ∀𝑥 𝑆𝑦 𝑆(𝑥(.r𝑅)𝑦) ∈ 𝑆)
33 ssn0 4131 . . 3 ((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) → (SubRing‘𝑅) ≠ ∅)
34 n0 4089 . . . 4 ((SubRing‘𝑅) ≠ ∅ ↔ ∃𝑟 𝑟 ∈ (SubRing‘𝑅))
35 subrgrcl 19015 . . . . 5 (𝑟 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
3635exlimiv 2013 . . . 4 (∃𝑟 𝑟 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
3734, 36sylbi 208 . . 3 ((SubRing‘𝑅) ≠ ∅ → 𝑅 ∈ Ring)
38 eqid 2774 . . . 4 (Base‘𝑅) = (Base‘𝑅)
3938, 9, 25issubrg2 19030 . . 3 (𝑅 ∈ Ring → ( 𝑆 ∈ (SubRing‘𝑅) ↔ ( 𝑆 ∈ (SubGrp‘𝑅) ∧ (1r𝑅) ∈ 𝑆 ∧ ∀𝑥 𝑆𝑦 𝑆(𝑥(.r𝑅)𝑦) ∈ 𝑆)))
4033, 37, 393syl 18 . 2 ((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) → ( 𝑆 ∈ (SubRing‘𝑅) ↔ ( 𝑆 ∈ (SubGrp‘𝑅) ∧ (1r𝑅) ∈ 𝑆 ∧ ∀𝑥 𝑆𝑦 𝑆(𝑥(.r𝑅)𝑦) ∈ 𝑆)))
416, 15, 32, 40mpbir3and 1433 1 ((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (SubRing‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 383  w3a 1098  wex 1855  wcel 2148  wne 2946  wral 3064  wss 3729  c0 4073   cint 4622  cfv 6042  (class class class)co 6812  Basecbs 16084  .rcmulr 16170  SubGrpcsubg 17816  1rcur 18729  Ringcrg 18775  SubRingcsubrg 19006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1873  ax-4 1888  ax-5 1994  ax-6 2060  ax-7 2096  ax-8 2150  ax-9 2157  ax-10 2177  ax-11 2193  ax-12 2206  ax-13 2411  ax-ext 2754  ax-rep 4917  ax-sep 4928  ax-nul 4936  ax-pow 4988  ax-pr 5048  ax-un 7117  ax-cnex 10215  ax-resscn 10216  ax-1cn 10217  ax-icn 10218  ax-addcl 10219  ax-addrcl 10220  ax-mulcl 10221  ax-mulrcl 10222  ax-mulcom 10223  ax-addass 10224  ax-mulass 10225  ax-distr 10226  ax-i2m1 10227  ax-1ne0 10228  ax-1rid 10229  ax-rnegex 10230  ax-rrecex 10231  ax-cnre 10232  ax-pre-lttri 10233  ax-pre-lttrn 10234  ax-pre-ltadd 10235  ax-pre-mulgt0 10236
This theorem depends on definitions:  df-bi 198  df-an 384  df-or 864  df-3or 1099  df-3an 1100  df-tru 1637  df-ex 1856  df-nf 1861  df-sb 2053  df-eu 2625  df-mo 2626  df-clab 2761  df-cleq 2767  df-clel 2770  df-nfc 2905  df-ne 2947  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3357  df-sbc 3594  df-csb 3689  df-dif 3732  df-un 3734  df-in 3736  df-ss 3743  df-pss 3745  df-nul 4074  df-if 4236  df-pw 4309  df-sn 4327  df-pr 4329  df-tp 4331  df-op 4333  df-uni 4586  df-int 4623  df-iun 4667  df-br 4798  df-opab 4860  df-mpt 4877  df-tr 4900  df-id 5171  df-eprel 5176  df-po 5184  df-so 5185  df-fr 5222  df-we 5224  df-xp 5269  df-rel 5270  df-cnv 5271  df-co 5272  df-dm 5273  df-rn 5274  df-res 5275  df-ima 5276  df-pred 5834  df-ord 5880  df-on 5881  df-lim 5882  df-suc 5883  df-iota 6005  df-fun 6044  df-fn 6045  df-f 6046  df-f1 6047  df-fo 6048  df-f1o 6049  df-fv 6050  df-riota 6773  df-ov 6815  df-oprab 6816  df-mpt2 6817  df-om 7234  df-wrecs 7580  df-recs 7642  df-rdg 7680  df-er 7917  df-en 8131  df-dom 8132  df-sdom 8133  df-pnf 10299  df-mnf 10300  df-xr 10301  df-ltxr 10302  df-le 10303  df-sub 10491  df-neg 10492  df-nn 11244  df-2 11302  df-3 11303  df-ndx 16087  df-slot 16088  df-base 16090  df-sets 16091  df-ress 16092  df-plusg 16182  df-mulr 16183  df-0g 16330  df-mgm 17470  df-sgrp 17512  df-mnd 17523  df-grp 17653  df-minusg 17654  df-subg 17819  df-mgp 18718  df-ur 18730  df-ring 18777  df-subrg 19008
This theorem is referenced by:  subrgin  19033  subrgmre  19034  aspsubrg  19566  rgspncl  38280
  Copyright terms: Public domain W3C validator