![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subrgbas | Structured version Visualization version GIF version |
Description: Base set of a subring structure. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
Ref | Expression |
---|---|
subrgbas.b | ⊢ 𝑆 = (𝑅 ↾s 𝐴) |
Ref | Expression |
---|---|
subrgbas | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrgsubg 18996 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅)) | |
2 | subrgbas.b | . . 3 ⊢ 𝑆 = (𝑅 ↾s 𝐴) | |
3 | 2 | subgbas 17806 | . 2 ⊢ (𝐴 ∈ (SubGrp‘𝑅) → 𝐴 = (Base‘𝑆)) |
4 | 1, 3 | syl 17 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ∈ wcel 2145 ‘cfv 6031 (class class class)co 6793 Basecbs 16064 ↾s cress 16065 SubGrpcsubg 17796 SubRingcsubrg 18986 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-i2m1 10206 ax-1ne0 10207 ax-rrecex 10210 ax-cnre 10211 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-nn 11223 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-subg 17799 df-ring 18757 df-subrg 18988 |
This theorem is referenced by: subrg1 19000 subrgmcl 19002 subrgdvds 19004 subrguss 19005 subrginv 19006 subrgdv 19007 subrgunit 19008 issubdrg 19015 subsubrg 19016 abvres 19049 sraassa 19540 resspsrbas 19630 resspsradd 19631 resspsrmul 19632 resspsrvsca 19633 subrgpsr 19634 subrgascl 19713 subrgasclcl 19714 qsssubdrg 20020 gzrngunitlem 20026 gzrngunit 20027 dmatcrng 20526 scmatcrng 20545 scmatstrbas 20550 sranlm 22708 isclmi 23096 plypf1 24188 |
Copyright terms: Public domain | W3C validator |