MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgbas Structured version   Visualization version   GIF version

Theorem subrgbas 18999
Description: Base set of a subring structure. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Hypothesis
Ref Expression
subrgbas.b 𝑆 = (𝑅s 𝐴)
Assertion
Ref Expression
subrgbas (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆))

Proof of Theorem subrgbas
StepHypRef Expression
1 subrgsubg 18996 . 2 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅))
2 subrgbas.b . . 3 𝑆 = (𝑅s 𝐴)
32subgbas 17806 . 2 (𝐴 ∈ (SubGrp‘𝑅) → 𝐴 = (Base‘𝑆))
41, 3syl 17 1 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1631  wcel 2145  cfv 6031  (class class class)co 6793  Basecbs 16064  s cress 16065  SubGrpcsubg 17796  SubRingcsubrg 18986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-i2m1 10206  ax-1ne0 10207  ax-rrecex 10210  ax-cnre 10211
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-nn 11223  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-subg 17799  df-ring 18757  df-subrg 18988
This theorem is referenced by:  subrg1  19000  subrgmcl  19002  subrgdvds  19004  subrguss  19005  subrginv  19006  subrgdv  19007  subrgunit  19008  issubdrg  19015  subsubrg  19016  abvres  19049  sraassa  19540  resspsrbas  19630  resspsradd  19631  resspsrmul  19632  resspsrvsca  19633  subrgpsr  19634  subrgascl  19713  subrgasclcl  19714  qsssubdrg  20020  gzrngunitlem  20026  gzrngunit  20027  dmatcrng  20526  scmatcrng  20545  scmatstrbas  20550  sranlm  22708  isclmi  23096  plypf1  24188
  Copyright terms: Public domain W3C validator