![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subne0d | Structured version Visualization version GIF version |
Description: Two unequal numbers have nonzero difference. (Contributed by Mario Carneiro, 1-Jan-2017.) |
Ref | Expression |
---|---|
negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
subne0d.3 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Ref | Expression |
---|---|
subne0d | ⊢ (𝜑 → (𝐴 − 𝐵) ≠ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subne0d.3 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
2 | negidd.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
3 | pncand.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
4 | subeq0 10520 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) | |
5 | 2, 3, 4 | syl2anc 696 | . . 3 ⊢ (𝜑 → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) |
6 | 5 | necon3bid 2977 | . 2 ⊢ (𝜑 → ((𝐴 − 𝐵) ≠ 0 ↔ 𝐴 ≠ 𝐵)) |
7 | 1, 6 | mpbird 247 | 1 ⊢ (𝜑 → (𝐴 − 𝐵) ≠ 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1632 ∈ wcel 2140 ≠ wne 2933 (class class class)co 6815 ℂcc 10147 0cc0 10149 − cmin 10479 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-br 4806 df-opab 4866 df-mpt 4883 df-id 5175 df-po 5188 df-so 5189 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-er 7914 df-en 8125 df-dom 8126 df-sdom 8127 df-pnf 10289 df-mnf 10290 df-ltxr 10292 df-sub 10481 |
This theorem is referenced by: modsumfzodifsn 12958 abssubne0 14276 rlimuni 14501 climuni 14503 pwm1geoser 14820 evth 22980 dvlem 23880 dvconst 23900 dvid 23901 dvcnp2 23903 dvaddbr 23921 dvmulbr 23922 dvcobr 23929 dvcjbr 23932 dvrec 23938 dvcnvlem 23959 dvferm2lem 23969 taylthlem2 24348 ulmdvlem1 24374 ang180lem4 24763 ang180lem5 24764 ang180 24765 isosctrlem3 24771 isosctr 24772 ssscongptld 24773 angpieqvdlem 24776 angpieqvdlem2 24777 angpined 24778 angpieqvd 24779 chordthmlem 24780 chordthmlem2 24781 heron 24786 asinlem 24816 lgamgulmlem2 24977 lgamgulmlem3 24978 ttgcontlem1 25986 brbtwn2 26006 axcontlem8 26072 2sqmod 29979 signsvtn0 30978 unbdqndv2lem2 32829 bj-bary1lem 33490 bj-bary1lem1 33491 bj-bary1 33492 pellexlem6 37919 jm2.26lem3 38089 areaquad 38323 bcc0 39060 bccm1k 39062 abssubrp 40005 lptre2pt 40394 limclner 40405 climxrre 40504 cnrefiisplem 40577 fperdvper 40655 stoweidlem23 40762 wallispilem4 40807 wallispi 40809 wallispi2lem1 40810 wallispi2lem2 40811 wallispi2 40812 stirlinglem5 40817 fourierdlem4 40850 fourierdlem42 40888 fourierdlem74 40919 fourierdlem75 40920 fouriersw 40970 sigardiv 41575 sigarcol 41578 sharhght 41579 |
Copyright terms: Public domain | W3C validator |