Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  submtmd Structured version   Visualization version   GIF version

Theorem submtmd 22127
 Description: A submonoid of a topological monoid is a topological monoid. (Contributed by Mario Carneiro, 6-Oct-2015.)
Hypothesis
Ref Expression
subgtgp.h 𝐻 = (𝐺s 𝑆)
Assertion
Ref Expression
submtmd ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → 𝐻 ∈ TopMnd)

Proof of Theorem submtmd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subgtgp.h . . . 4 𝐻 = (𝐺s 𝑆)
21submmnd 17561 . . 3 (𝑆 ∈ (SubMnd‘𝐺) → 𝐻 ∈ Mnd)
32adantl 467 . 2 ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → 𝐻 ∈ Mnd)
4 tmdtps 22099 . . . 4 (𝐺 ∈ TopMnd → 𝐺 ∈ TopSp)
5 resstps 21211 . . . 4 ((𝐺 ∈ TopSp ∧ 𝑆 ∈ (SubMnd‘𝐺)) → (𝐺s 𝑆) ∈ TopSp)
64, 5sylan 561 . . 3 ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → (𝐺s 𝑆) ∈ TopSp)
71, 6syl5eqel 2853 . 2 ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → 𝐻 ∈ TopSp)
81submbas 17562 . . . . . . 7 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 = (Base‘𝐻))
98adantl 467 . . . . . 6 ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → 𝑆 = (Base‘𝐻))
10 eqid 2770 . . . . . . . . 9 (+g𝐺) = (+g𝐺)
111, 10ressplusg 16200 . . . . . . . 8 (𝑆 ∈ (SubMnd‘𝐺) → (+g𝐺) = (+g𝐻))
1211adantl 467 . . . . . . 7 ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → (+g𝐺) = (+g𝐻))
1312oveqd 6809 . . . . . 6 ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐻)𝑦))
149, 9, 13mpt2eq123dv 6863 . . . . 5 ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → (𝑥𝑆, 𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) = (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ (𝑥(+g𝐻)𝑦)))
15 eqid 2770 . . . . . 6 (Base‘𝐻) = (Base‘𝐻)
16 eqid 2770 . . . . . 6 (+g𝐻) = (+g𝐻)
17 eqid 2770 . . . . . 6 (+𝑓𝐻) = (+𝑓𝐻)
1815, 16, 17plusffval 17454 . . . . 5 (+𝑓𝐻) = (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ (𝑥(+g𝐻)𝑦))
1914, 18syl6reqr 2823 . . . 4 ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → (+𝑓𝐻) = (𝑥𝑆, 𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)))
20 eqid 2770 . . . . 5 ((TopOpen‘𝐺) ↾t 𝑆) = ((TopOpen‘𝐺) ↾t 𝑆)
21 eqid 2770 . . . . . . 7 (TopOpen‘𝐺) = (TopOpen‘𝐺)
22 eqid 2770 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
2321, 22tmdtopon 22104 . . . . . 6 (𝐺 ∈ TopMnd → (TopOpen‘𝐺) ∈ (TopOn‘(Base‘𝐺)))
2423adantr 466 . . . . 5 ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → (TopOpen‘𝐺) ∈ (TopOn‘(Base‘𝐺)))
2522submss 17557 . . . . . 6 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
2625adantl 467 . . . . 5 ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → 𝑆 ⊆ (Base‘𝐺))
27 eqid 2770 . . . . . . . 8 (+𝑓𝐺) = (+𝑓𝐺)
2822, 10, 27plusffval 17454 . . . . . . 7 (+𝑓𝐺) = (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦))
2921, 27tmdcn 22106 . . . . . . 7 (𝐺 ∈ TopMnd → (+𝑓𝐺) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺)))
3028, 29syl5eqelr 2854 . . . . . 6 (𝐺 ∈ TopMnd → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺)))
3130adantr 466 . . . . 5 ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺)))
3220, 24, 26, 20, 24, 26, 31cnmpt2res 21700 . . . 4 ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → (𝑥𝑆, 𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) ∈ ((((TopOpen‘𝐺) ↾t 𝑆) ×t ((TopOpen‘𝐺) ↾t 𝑆)) Cn (TopOpen‘𝐺)))
3319, 32eqeltrd 2849 . . 3 ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → (+𝑓𝐻) ∈ ((((TopOpen‘𝐺) ↾t 𝑆) ×t ((TopOpen‘𝐺) ↾t 𝑆)) Cn (TopOpen‘𝐺)))
3415, 17mndplusf 17516 . . . . . 6 (𝐻 ∈ Mnd → (+𝑓𝐻):((Base‘𝐻) × (Base‘𝐻))⟶(Base‘𝐻))
35 frn 6193 . . . . . 6 ((+𝑓𝐻):((Base‘𝐻) × (Base‘𝐻))⟶(Base‘𝐻) → ran (+𝑓𝐻) ⊆ (Base‘𝐻))
363, 34, 353syl 18 . . . . 5 ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → ran (+𝑓𝐻) ⊆ (Base‘𝐻))
3736, 9sseqtr4d 3789 . . . 4 ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → ran (+𝑓𝐻) ⊆ 𝑆)
38 cnrest2 21310 . . . 4 (((TopOpen‘𝐺) ∈ (TopOn‘(Base‘𝐺)) ∧ ran (+𝑓𝐻) ⊆ 𝑆𝑆 ⊆ (Base‘𝐺)) → ((+𝑓𝐻) ∈ ((((TopOpen‘𝐺) ↾t 𝑆) ×t ((TopOpen‘𝐺) ↾t 𝑆)) Cn (TopOpen‘𝐺)) ↔ (+𝑓𝐻) ∈ ((((TopOpen‘𝐺) ↾t 𝑆) ×t ((TopOpen‘𝐺) ↾t 𝑆)) Cn ((TopOpen‘𝐺) ↾t 𝑆))))
3924, 37, 26, 38syl3anc 1475 . . 3 ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → ((+𝑓𝐻) ∈ ((((TopOpen‘𝐺) ↾t 𝑆) ×t ((TopOpen‘𝐺) ↾t 𝑆)) Cn (TopOpen‘𝐺)) ↔ (+𝑓𝐻) ∈ ((((TopOpen‘𝐺) ↾t 𝑆) ×t ((TopOpen‘𝐺) ↾t 𝑆)) Cn ((TopOpen‘𝐺) ↾t 𝑆))))
4033, 39mpbid 222 . 2 ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → (+𝑓𝐻) ∈ ((((TopOpen‘𝐺) ↾t 𝑆) ×t ((TopOpen‘𝐺) ↾t 𝑆)) Cn ((TopOpen‘𝐺) ↾t 𝑆)))
411, 21resstopn 21210 . . 3 ((TopOpen‘𝐺) ↾t 𝑆) = (TopOpen‘𝐻)
4217, 41istmd 22097 . 2 (𝐻 ∈ TopMnd ↔ (𝐻 ∈ Mnd ∧ 𝐻 ∈ TopSp ∧ (+𝑓𝐻) ∈ ((((TopOpen‘𝐺) ↾t 𝑆) ×t ((TopOpen‘𝐺) ↾t 𝑆)) Cn ((TopOpen‘𝐺) ↾t 𝑆))))
433, 7, 40, 42syl3anbrc 1427 1 ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → 𝐻 ∈ TopMnd)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 382   = wceq 1630   ∈ wcel 2144   ⊆ wss 3721   × cxp 5247  ran crn 5250  ⟶wf 6027  ‘cfv 6031  (class class class)co 6792   ↦ cmpt2 6794  Basecbs 16063   ↾s cress 16064  +gcplusg 16148   ↾t crest 16288  TopOpenctopn 16289  +𝑓cplusf 17446  Mndcmnd 17501  SubMndcsubmnd 17541  TopOnctopon 20934  TopSpctps 20956   Cn ccn 21248   ×t ctx 21583  TopMndctmd 22093 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-oadd 7716  df-er 7895  df-map 8010  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-fi 8472  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-2 11280  df-3 11281  df-4 11282  df-5 11283  df-6 11284  df-7 11285  df-8 11286  df-9 11287  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-tset 16167  df-rest 16290  df-topn 16291  df-0g 16309  df-topgen 16311  df-plusf 17448  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-submnd 17543  df-top 20918  df-topon 20935  df-topsp 20957  df-bases 20970  df-cn 21251  df-tx 21585  df-tmd 22095 This theorem is referenced by:  subgtgp  22128  nrgtdrg  22716  iistmd  30282
 Copyright terms: Public domain W3C validator