MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  submre Structured version   Visualization version   GIF version

Theorem submre 16473
Description: The subcollection of a closed set system below a given closed set is itself a closed set system. (Contributed by Stefan O'Rear, 9-Mar-2015.)
Assertion
Ref Expression
submre ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) → (𝐶 ∩ 𝒫 𝐴) ∈ (Moore‘𝐴))

Proof of Theorem submre
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 inss2 3982 . . 3 (𝐶 ∩ 𝒫 𝐴) ⊆ 𝒫 𝐴
21a1i 11 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) → (𝐶 ∩ 𝒫 𝐴) ⊆ 𝒫 𝐴)
3 simpr 471 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) → 𝐴𝐶)
4 pwidg 4312 . . . 4 (𝐴𝐶𝐴 ∈ 𝒫 𝐴)
54adantl 467 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) → 𝐴 ∈ 𝒫 𝐴)
63, 5elind 3949 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) → 𝐴 ∈ (𝐶 ∩ 𝒫 𝐴))
7 simp1l 1239 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) ∧ 𝑥 ⊆ (𝐶 ∩ 𝒫 𝐴) ∧ 𝑥 ≠ ∅) → 𝐶 ∈ (Moore‘𝑋))
8 inss1 3981 . . . . . 6 (𝐶 ∩ 𝒫 𝐴) ⊆ 𝐶
9 sstr 3760 . . . . . 6 ((𝑥 ⊆ (𝐶 ∩ 𝒫 𝐴) ∧ (𝐶 ∩ 𝒫 𝐴) ⊆ 𝐶) → 𝑥𝐶)
108, 9mpan2 671 . . . . 5 (𝑥 ⊆ (𝐶 ∩ 𝒫 𝐴) → 𝑥𝐶)
11103ad2ant2 1128 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) ∧ 𝑥 ⊆ (𝐶 ∩ 𝒫 𝐴) ∧ 𝑥 ≠ ∅) → 𝑥𝐶)
12 simp3 1132 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) ∧ 𝑥 ⊆ (𝐶 ∩ 𝒫 𝐴) ∧ 𝑥 ≠ ∅) → 𝑥 ≠ ∅)
13 mreintcl 16463 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶𝑥 ≠ ∅) → 𝑥𝐶)
147, 11, 12, 13syl3anc 1476 . . 3 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) ∧ 𝑥 ⊆ (𝐶 ∩ 𝒫 𝐴) ∧ 𝑥 ≠ ∅) → 𝑥𝐶)
15 sstr 3760 . . . . . . . 8 ((𝑥 ⊆ (𝐶 ∩ 𝒫 𝐴) ∧ (𝐶 ∩ 𝒫 𝐴) ⊆ 𝒫 𝐴) → 𝑥 ⊆ 𝒫 𝐴)
161, 15mpan2 671 . . . . . . 7 (𝑥 ⊆ (𝐶 ∩ 𝒫 𝐴) → 𝑥 ⊆ 𝒫 𝐴)
17163ad2ant2 1128 . . . . . 6 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) ∧ 𝑥 ⊆ (𝐶 ∩ 𝒫 𝐴) ∧ 𝑥 ≠ ∅) → 𝑥 ⊆ 𝒫 𝐴)
18 intssuni2 4636 . . . . . 6 ((𝑥 ⊆ 𝒫 𝐴𝑥 ≠ ∅) → 𝑥 𝒫 𝐴)
1917, 12, 18syl2anc 573 . . . . 5 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) ∧ 𝑥 ⊆ (𝐶 ∩ 𝒫 𝐴) ∧ 𝑥 ≠ ∅) → 𝑥 𝒫 𝐴)
20 unipw 5046 . . . . 5 𝒫 𝐴 = 𝐴
2119, 20syl6sseq 3800 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) ∧ 𝑥 ⊆ (𝐶 ∩ 𝒫 𝐴) ∧ 𝑥 ≠ ∅) → 𝑥𝐴)
22 elpw2g 4958 . . . . . 6 (𝐴𝐶 → ( 𝑥 ∈ 𝒫 𝐴 𝑥𝐴))
2322adantl 467 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) → ( 𝑥 ∈ 𝒫 𝐴 𝑥𝐴))
24233ad2ant1 1127 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) ∧ 𝑥 ⊆ (𝐶 ∩ 𝒫 𝐴) ∧ 𝑥 ≠ ∅) → ( 𝑥 ∈ 𝒫 𝐴 𝑥𝐴))
2521, 24mpbird 247 . . 3 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) ∧ 𝑥 ⊆ (𝐶 ∩ 𝒫 𝐴) ∧ 𝑥 ≠ ∅) → 𝑥 ∈ 𝒫 𝐴)
2614, 25elind 3949 . 2 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) ∧ 𝑥 ⊆ (𝐶 ∩ 𝒫 𝐴) ∧ 𝑥 ≠ ∅) → 𝑥 ∈ (𝐶 ∩ 𝒫 𝐴))
272, 6, 26ismred 16470 1 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) → (𝐶 ∩ 𝒫 𝐴) ∈ (Moore‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071  wcel 2145  wne 2943  cin 3722  wss 3723  c0 4063  𝒫 cpw 4297   cuni 4574   cint 4611  cfv 6031  Moorecmre 16450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-int 4612  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-iota 5994  df-fun 6033  df-fv 6039  df-mre 16454
This theorem is referenced by:  submrc  16496
  Copyright terms: Public domain W3C validator