![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > submrcl | Structured version Visualization version GIF version |
Description: Reverse closure for submonoids. (Contributed by Mario Carneiro, 7-Mar-2015.) |
Ref | Expression |
---|---|
submrcl | ⊢ (𝑆 ∈ (SubMnd‘𝑀) → 𝑀 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-submnd 17383 | . . 3 ⊢ SubMnd = (𝑠 ∈ Mnd ↦ {𝑡 ∈ 𝒫 (Base‘𝑠) ∣ ((0g‘𝑠) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (𝑥(+g‘𝑠)𝑦) ∈ 𝑡)}) | |
2 | 1 | dmmptss 5669 | . 2 ⊢ dom SubMnd ⊆ Mnd |
3 | elfvdm 6258 | . 2 ⊢ (𝑆 ∈ (SubMnd‘𝑀) → 𝑀 ∈ dom SubMnd) | |
4 | 2, 3 | sseldi 3634 | 1 ⊢ (𝑆 ∈ (SubMnd‘𝑀) → 𝑀 ∈ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 2030 ∀wral 2941 {crab 2945 𝒫 cpw 4191 dom cdm 5143 ‘cfv 5926 (class class class)co 6690 Basecbs 15904 +gcplusg 15988 0gc0g 16147 Mndcmnd 17341 SubMndcsubmnd 17381 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-xp 5149 df-rel 5150 df-cnv 5151 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fv 5934 df-submnd 17383 |
This theorem is referenced by: submss 17397 subm0cl 17399 submcl 17400 submmnd 17401 subm0 17403 subsubm 17404 resmhm2 17407 gsumsubm 17420 gsumwsubmcl 17422 submmulgcl 17632 oppgsubm 17838 lsmub1x 18107 lsmub2x 18108 lsmsubm 18114 submarchi 29868 |
Copyright terms: Public domain | W3C validator |