Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  submrc Structured version   Visualization version   GIF version

Theorem submrc 16335
 Description: In a closure system which is cut off above some level, closures below that level act as normal. (Contributed by Stefan O'Rear, 9-Mar-2015.)
Hypotheses
Ref Expression
submrc.f 𝐹 = (mrCls‘𝐶)
submrc.g 𝐺 = (mrCls‘(𝐶 ∩ 𝒫 𝐷))
Assertion
Ref Expression
submrc ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → (𝐺𝑈) = (𝐹𝑈))

Proof of Theorem submrc
StepHypRef Expression
1 submre 16312 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶) → (𝐶 ∩ 𝒫 𝐷) ∈ (Moore‘𝐷))
213adant3 1101 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → (𝐶 ∩ 𝒫 𝐷) ∈ (Moore‘𝐷))
3 simp1 1081 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → 𝐶 ∈ (Moore‘𝑋))
4 submrc.f . . . 4 𝐹 = (mrCls‘𝐶)
5 simp3 1083 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → 𝑈𝐷)
6 mress 16300 . . . . . 6 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶) → 𝐷𝑋)
763adant3 1101 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → 𝐷𝑋)
85, 7sstrd 3646 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → 𝑈𝑋)
93, 4, 8mrcssidd 16332 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → 𝑈 ⊆ (𝐹𝑈))
104mrccl 16318 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → (𝐹𝑈) ∈ 𝐶)
113, 8, 10syl2anc 694 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → (𝐹𝑈) ∈ 𝐶)
124mrcsscl 16327 . . . . . 6 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐷𝐷𝐶) → (𝐹𝑈) ⊆ 𝐷)
13123com23 1291 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → (𝐹𝑈) ⊆ 𝐷)
14 fvex 6239 . . . . . 6 (𝐹𝑈) ∈ V
1514elpw 4197 . . . . 5 ((𝐹𝑈) ∈ 𝒫 𝐷 ↔ (𝐹𝑈) ⊆ 𝐷)
1613, 15sylibr 224 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → (𝐹𝑈) ∈ 𝒫 𝐷)
1711, 16elind 3831 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → (𝐹𝑈) ∈ (𝐶 ∩ 𝒫 𝐷))
18 submrc.g . . . 4 𝐺 = (mrCls‘(𝐶 ∩ 𝒫 𝐷))
1918mrcsscl 16327 . . 3 (((𝐶 ∩ 𝒫 𝐷) ∈ (Moore‘𝐷) ∧ 𝑈 ⊆ (𝐹𝑈) ∧ (𝐹𝑈) ∈ (𝐶 ∩ 𝒫 𝐷)) → (𝐺𝑈) ⊆ (𝐹𝑈))
202, 9, 17, 19syl3anc 1366 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → (𝐺𝑈) ⊆ (𝐹𝑈))
212, 18, 5mrcssidd 16332 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → 𝑈 ⊆ (𝐺𝑈))
22 inss1 3866 . . . 4 (𝐶 ∩ 𝒫 𝐷) ⊆ 𝐶
2318mrccl 16318 . . . . 5 (((𝐶 ∩ 𝒫 𝐷) ∈ (Moore‘𝐷) ∧ 𝑈𝐷) → (𝐺𝑈) ∈ (𝐶 ∩ 𝒫 𝐷))
242, 5, 23syl2anc 694 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → (𝐺𝑈) ∈ (𝐶 ∩ 𝒫 𝐷))
2522, 24sseldi 3634 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → (𝐺𝑈) ∈ 𝐶)
264mrcsscl 16327 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ (𝐺𝑈) ∧ (𝐺𝑈) ∈ 𝐶) → (𝐹𝑈) ⊆ (𝐺𝑈))
273, 21, 25, 26syl3anc 1366 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → (𝐹𝑈) ⊆ (𝐺𝑈))
2820, 27eqssd 3653 1 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → (𝐺𝑈) = (𝐹𝑈))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030   ∩ cin 3606   ⊆ wss 3607  𝒫 cpw 4191  ‘cfv 5926  Moorecmre 16289  mrClscmrc 16290 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-int 4508  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-fv 5934  df-mre 16293  df-mrc 16294 This theorem is referenced by:  evlseu  19564
 Copyright terms: Public domain W3C validator