Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  submnd0 Structured version   Visualization version   GIF version

Theorem submnd0 17527
 Description: The zero of a submonoid is the same as the zero in the parent monoid. (Note that we must add the condition that the zero of the parent monoid is actually contained in the submonoid, because it is possible to have "subsets that are monoids" which are not submonoids because they have a different identity element.) (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
submnd0.b 𝐵 = (Base‘𝐺)
submnd0.z 0 = (0g𝐺)
submnd0.h 𝐻 = (𝐺s 𝑆)
Assertion
Ref Expression
submnd0 (((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆𝐵0𝑆)) → 0 = (0g𝐻))

Proof of Theorem submnd0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2770 . 2 (Base‘𝐻) = (Base‘𝐻)
2 eqid 2770 . 2 (0g𝐻) = (0g𝐻)
3 eqid 2770 . 2 (+g𝐻) = (+g𝐻)
4 simprr 748 . . 3 (((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆𝐵0𝑆)) → 0𝑆)
5 submnd0.h . . . . 5 𝐻 = (𝐺s 𝑆)
6 submnd0.b . . . . 5 𝐵 = (Base‘𝐺)
75, 6ressbas2 16137 . . . 4 (𝑆𝐵𝑆 = (Base‘𝐻))
87ad2antrl 699 . . 3 (((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆𝐵0𝑆)) → 𝑆 = (Base‘𝐻))
94, 8eleqtrd 2851 . 2 (((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆𝐵0𝑆)) → 0 ∈ (Base‘𝐻))
10 fvex 6342 . . . . . . 7 (Base‘𝐻) ∈ V
118, 10syl6eqel 2857 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆𝐵0𝑆)) → 𝑆 ∈ V)
1211adantr 466 . . . . 5 ((((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆𝐵0𝑆)) ∧ 𝑥 ∈ (Base‘𝐻)) → 𝑆 ∈ V)
13 eqid 2770 . . . . . 6 (+g𝐺) = (+g𝐺)
145, 13ressplusg 16200 . . . . 5 (𝑆 ∈ V → (+g𝐺) = (+g𝐻))
1512, 14syl 17 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆𝐵0𝑆)) ∧ 𝑥 ∈ (Base‘𝐻)) → (+g𝐺) = (+g𝐻))
1615oveqd 6809 . . 3 ((((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆𝐵0𝑆)) ∧ 𝑥 ∈ (Base‘𝐻)) → ( 0 (+g𝐺)𝑥) = ( 0 (+g𝐻)𝑥))
17 simpll 742 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆𝐵0𝑆)) → 𝐺 ∈ Mnd)
185, 6ressbasss 16138 . . . . 5 (Base‘𝐻) ⊆ 𝐵
1918sseli 3746 . . . 4 (𝑥 ∈ (Base‘𝐻) → 𝑥𝐵)
20 submnd0.z . . . . 5 0 = (0g𝐺)
216, 13, 20mndlid 17518 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑥𝐵) → ( 0 (+g𝐺)𝑥) = 𝑥)
2217, 19, 21syl2an 575 . . 3 ((((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆𝐵0𝑆)) ∧ 𝑥 ∈ (Base‘𝐻)) → ( 0 (+g𝐺)𝑥) = 𝑥)
2316, 22eqtr3d 2806 . 2 ((((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆𝐵0𝑆)) ∧ 𝑥 ∈ (Base‘𝐻)) → ( 0 (+g𝐻)𝑥) = 𝑥)
2415oveqd 6809 . . 3 ((((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆𝐵0𝑆)) ∧ 𝑥 ∈ (Base‘𝐻)) → (𝑥(+g𝐺) 0 ) = (𝑥(+g𝐻) 0 ))
256, 13, 20mndrid 17519 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑥𝐵) → (𝑥(+g𝐺) 0 ) = 𝑥)
2617, 19, 25syl2an 575 . . 3 ((((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆𝐵0𝑆)) ∧ 𝑥 ∈ (Base‘𝐻)) → (𝑥(+g𝐺) 0 ) = 𝑥)
2724, 26eqtr3d 2806 . 2 ((((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆𝐵0𝑆)) ∧ 𝑥 ∈ (Base‘𝐻)) → (𝑥(+g𝐻) 0 ) = 𝑥)
281, 2, 3, 9, 23, 27ismgmid2 17474 1 (((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆𝐵0𝑆)) → 0 = (0g𝐻))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   = wceq 1630   ∈ wcel 2144  Vcvv 3349   ⊆ wss 3721  ‘cfv 6031  (class class class)co 6792  Basecbs 16063   ↾s cress 16064  +gcplusg 16148  0gc0g 16307  Mndcmnd 17501 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-2 11280  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-0g 16309  df-mgm 17449  df-sgrp 17491  df-mnd 17502 This theorem is referenced by:  subm0  17563  xrge00  30020  gsumge0cl  41099
 Copyright terms: Public domain W3C validator