Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  submatminr1 Structured version   Visualization version   GIF version

Theorem submatminr1 30210
 Description: If we take a submatrix by removing the row 𝐼 and column 𝐽, then the result is the same on the matrix with row 𝐼 and column 𝐽 modified by the minMatR1 operator. (Contributed by Thierry Arnoux, 25-Aug-2020.)
Hypotheses
Ref Expression
submateq.a 𝐴 = ((1...𝑁) Mat 𝑅)
submateq.b 𝐵 = (Base‘𝐴)
submateq.n (𝜑𝑁 ∈ ℕ)
submateq.i (𝜑𝐼 ∈ (1...𝑁))
submateq.j (𝜑𝐽 ∈ (1...𝑁))
submatminr1.r (𝜑𝑅 ∈ Ring)
submatminr1.m (𝜑𝑀𝐵)
submatminr1.e 𝐸 = (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)
Assertion
Ref Expression
submatminr1 (𝜑 → (𝐼(subMat1‘𝑀)𝐽) = (𝐼(subMat1‘𝐸)𝐽))

Proof of Theorem submatminr1
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 submateq.a . 2 𝐴 = ((1...𝑁) Mat 𝑅)
2 submateq.b . 2 𝐵 = (Base‘𝐴)
3 submateq.n . 2 (𝜑𝑁 ∈ ℕ)
4 submateq.i . 2 (𝜑𝐼 ∈ (1...𝑁))
5 submateq.j . 2 (𝜑𝐽 ∈ (1...𝑁))
6 submatminr1.m . 2 (𝜑𝑀𝐵)
7 submatminr1.e . . . 4 𝐸 = (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)
8 submatminr1.r . . . . . 6 (𝜑𝑅 ∈ Ring)
9 eqid 2770 . . . . . . 7 (1r𝑅) = (1r𝑅)
101, 2, 9minmar1marrep 20673 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (((1...𝑁) minMatR1 𝑅)‘𝑀) = (𝑀((1...𝑁) matRRep 𝑅)(1r𝑅)))
118, 6, 10syl2anc 565 . . . . 5 (𝜑 → (((1...𝑁) minMatR1 𝑅)‘𝑀) = (𝑀((1...𝑁) matRRep 𝑅)(1r𝑅)))
1211oveqd 6809 . . . 4 (𝜑 → (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽) = (𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r𝑅))𝐽))
137, 12syl5eq 2816 . . 3 (𝜑𝐸 = (𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r𝑅))𝐽))
14 eqid 2770 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
1514, 9ringidcl 18775 . . . . 5 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
168, 15syl 17 . . . 4 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
171, 2marrepcl 20587 . . . 4 (((𝑅 ∈ Ring ∧ 𝑀𝐵 ∧ (1r𝑅) ∈ (Base‘𝑅)) ∧ (𝐼 ∈ (1...𝑁) ∧ 𝐽 ∈ (1...𝑁))) → (𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r𝑅))𝐽) ∈ 𝐵)
188, 6, 16, 4, 5, 17syl32anc 1483 . . 3 (𝜑 → (𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r𝑅))𝐽) ∈ 𝐵)
1913, 18eqeltrd 2849 . 2 (𝜑𝐸𝐵)
20133ad2ant1 1126 . . . 4 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝐸 = (𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r𝑅))𝐽))
2120oveqd 6809 . . 3 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑖𝐸𝑗) = (𝑖(𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r𝑅))𝐽)𝑗))
2263ad2ant1 1126 . . . 4 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝑀𝐵)
23163ad2ant1 1126 . . . 4 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (1r𝑅) ∈ (Base‘𝑅))
2443ad2ant1 1126 . . . 4 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝐼 ∈ (1...𝑁))
2553ad2ant1 1126 . . . 4 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝐽 ∈ (1...𝑁))
26 simp2 1130 . . . . 5 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝑖 ∈ ((1...𝑁) ∖ {𝐼}))
2726eldifad 3733 . . . 4 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝑖 ∈ (1...𝑁))
28 simp3 1131 . . . . 5 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝑗 ∈ ((1...𝑁) ∖ {𝐽}))
2928eldifad 3733 . . . 4 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝑗 ∈ (1...𝑁))
30 eqid 2770 . . . . 5 ((1...𝑁) matRRep 𝑅) = ((1...𝑁) matRRep 𝑅)
31 eqid 2770 . . . . 5 (0g𝑅) = (0g𝑅)
321, 2, 30, 31marrepeval 20586 . . . 4 (((𝑀𝐵 ∧ (1r𝑅) ∈ (Base‘𝑅)) ∧ (𝐼 ∈ (1...𝑁) ∧ 𝐽 ∈ (1...𝑁)) ∧ (𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁))) → (𝑖(𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r𝑅))𝐽)𝑗) = if(𝑖 = 𝐼, if(𝑗 = 𝐽, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))
3322, 23, 24, 25, 27, 29, 32syl222anc 1491 . . 3 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑖(𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r𝑅))𝐽)𝑗) = if(𝑖 = 𝐼, if(𝑗 = 𝐽, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))
34 eldifsn 4451 . . . . . . 7 (𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ↔ (𝑖 ∈ (1...𝑁) ∧ 𝑖𝐼))
3526, 34sylib 208 . . . . . 6 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑖 ∈ (1...𝑁) ∧ 𝑖𝐼))
3635simprd 477 . . . . 5 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝑖𝐼)
3736neneqd 2947 . . . 4 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → ¬ 𝑖 = 𝐼)
3837iffalsed 4234 . . 3 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → if(𝑖 = 𝐼, if(𝑗 = 𝐽, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)) = (𝑖𝑀𝑗))
3921, 33, 383eqtrrd 2809 . 2 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑖𝑀𝑗) = (𝑖𝐸𝑗))
401, 2, 3, 4, 5, 6, 19, 39submateq 30209 1 (𝜑 → (𝐼(subMat1‘𝑀)𝐽) = (𝐼(subMat1‘𝐸)𝐽))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   ∧ w3a 1070   = wceq 1630   ∈ wcel 2144   ≠ wne 2942   ∖ cdif 3718  ifcif 4223  {csn 4314  ‘cfv 6031  (class class class)co 6792  1c1 10138  ℕcn 11221  ...cfz 12532  Basecbs 16063  0gc0g 16307  1rcur 18708  Ringcrg 18754   Mat cmat 20429   matRRep cmarrep 20579   minMatR1 cminmar1 20656  subMat1csmat 30193 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-ot 4323  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-supp 7446  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-map 8010  df-ixp 8062  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-fsupp 8431  df-sup 8503  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-2 11280  df-3 11281  df-4 11282  df-5 11283  df-6 11284  df-7 11285  df-8 11286  df-9 11287  df-n0 11494  df-z 11579  df-dec 11695  df-uz 11888  df-fz 12533  df-fzo 12673  df-struct 16065  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-mulr 16162  df-sca 16164  df-vsca 16165  df-ip 16166  df-tset 16167  df-ple 16168  df-ds 16171  df-hom 16173  df-cco 16174  df-0g 16309  df-prds 16315  df-pws 16317  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-grp 17632  df-mgp 18697  df-ur 18709  df-ring 18756  df-sra 19386  df-rgmod 19387  df-dsmm 20292  df-frlm 20307  df-mat 20430  df-marrep 20581  df-minmar1 20658  df-smat 30194 This theorem is referenced by:  madjusmdetlem1  30227
 Copyright terms: Public domain W3C validator