![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > suble0 | Structured version Visualization version GIF version |
Description: Nonpositive subtraction. (Contributed by NM, 20-Mar-2008.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
suble0 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 − 𝐵) ≤ 0 ↔ 𝐴 ≤ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 10253 | . . 3 ⊢ 0 ∈ ℝ | |
2 | suble 10719 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 ∈ ℝ) → ((𝐴 − 𝐵) ≤ 0 ↔ (𝐴 − 0) ≤ 𝐵)) | |
3 | 1, 2 | mp3an3 1562 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 − 𝐵) ≤ 0 ↔ (𝐴 − 0) ≤ 𝐵)) |
4 | simpl 474 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ) | |
5 | 4 | recnd 10281 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℂ) |
6 | 5 | subid1d 10594 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 − 0) = 𝐴) |
7 | 6 | breq1d 4815 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 − 0) ≤ 𝐵 ↔ 𝐴 ≤ 𝐵)) |
8 | 3, 7 | bitrd 268 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 − 𝐵) ≤ 0 ↔ 𝐴 ≤ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∈ wcel 2140 class class class wbr 4805 (class class class)co 6815 ℝcr 10148 0cc0 10149 ≤ cle 10288 − cmin 10479 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-br 4806 df-opab 4866 df-mpt 4883 df-id 5175 df-po 5188 df-so 5189 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-er 7914 df-en 8125 df-dom 8126 df-sdom 8127 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 |
This theorem is referenced by: suble0d 10831 mulsuble0b 11108 fzo0n 12705 swrdccat 13714 repswswrd 13752 divalglem6 15344 atans2 24879 dchrisum0re 25423 pntrmax 25474 pntpbnd1a 25495 ballotlemic 30899 ftc1anclem5 33821 |
Copyright terms: Public domain | W3C validator |