MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subid1 Structured version   Visualization version   GIF version

Theorem subid1 10503
Description: Identity law for subtraction. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
subid1 (𝐴 ∈ ℂ → (𝐴 − 0) = 𝐴)

Proof of Theorem subid1
StepHypRef Expression
1 addid1 10418 . . 3 (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)
21oveq1d 6808 . 2 (𝐴 ∈ ℂ → ((𝐴 + 0) − 0) = (𝐴 − 0))
3 0cn 10234 . . 3 0 ∈ ℂ
4 pncan 10489 . . 3 ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → ((𝐴 + 0) − 0) = 𝐴)
53, 4mpan2 671 . 2 (𝐴 ∈ ℂ → ((𝐴 + 0) − 0) = 𝐴)
62, 5eqtr3d 2807 1 (𝐴 ∈ ℂ → (𝐴 − 0) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1631  wcel 2145  (class class class)co 6793  cc 10136  0cc0 10138   + caddc 10141  cmin 10468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-po 5170  df-so 5171  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-ltxr 10281  df-sub 10470
This theorem is referenced by:  subneg  10532  subid1i  10555  subid1d  10583  swrd0fv  13648  swrdccatin12lem2b  13695  shftidt2  14029  abs2dif  14280  clim0  14445  rlim0  14447  rlim0lt  14448  climi0  14451  geo2lim  14813  fallfac1  14971  cnbl0  22797  cnblcld  22798  cnfldnm  22802  abelth  24415  logtayl  24627
  Copyright terms: Public domain W3C validator