![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subgss | Structured version Visualization version GIF version |
Description: A subgroup is a subset. (Contributed by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
issubg.b | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
subgss | ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issubg.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | 1 | issubg 17791 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ∧ (𝐺 ↾s 𝑆) ∈ Grp)) |
3 | 2 | simp2bi 1141 | 1 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1628 ∈ wcel 2135 ⊆ wss 3711 ‘cfv 6045 (class class class)co 6809 Basecbs 16055 ↾s cress 16056 Grpcgrp 17619 SubGrpcsubg 17785 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-8 2137 ax-9 2144 ax-10 2164 ax-11 2179 ax-12 2192 ax-13 2387 ax-ext 2736 ax-sep 4929 ax-nul 4937 ax-pow 4988 ax-pr 5051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1631 df-ex 1850 df-nf 1855 df-sb 2043 df-eu 2607 df-mo 2608 df-clab 2743 df-cleq 2749 df-clel 2752 df-nfc 2887 df-ne 2929 df-ral 3051 df-rex 3052 df-rab 3055 df-v 3338 df-sbc 3573 df-dif 3714 df-un 3716 df-in 3718 df-ss 3725 df-nul 4055 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4585 df-br 4801 df-opab 4861 df-mpt 4878 df-id 5170 df-xp 5268 df-rel 5269 df-cnv 5270 df-co 5271 df-dm 5272 df-rn 5273 df-res 5274 df-ima 5275 df-iota 6008 df-fun 6047 df-fv 6053 df-ov 6812 df-subg 17788 |
This theorem is referenced by: subgbas 17795 subg0 17797 subginv 17798 subgsubcl 17802 subgsub 17803 subgmulgcl 17804 subgmulg 17805 issubg2 17806 issubg4 17810 subsubg 17814 subgint 17815 nsgconj 17824 nsgacs 17827 ssnmz 17833 eqger 17841 eqgid 17843 eqgen 17844 eqgcpbl 17845 lagsubg2 17852 lagsubg 17853 resghm 17873 ghmnsgima 17881 conjsubg 17889 conjsubgen 17890 conjnmz 17891 conjnmzb 17892 gicsubgen 17917 subgga 17929 gasubg 17931 gastacos 17939 orbstafun 17940 cntrsubgnsg 17969 oddvds2 18179 subgpgp 18208 odcau 18215 pgpssslw 18225 sylow2blem1 18231 sylow2blem2 18232 sylow2blem3 18233 slwhash 18235 fislw 18236 sylow2 18237 sylow3lem1 18238 sylow3lem2 18239 sylow3lem3 18240 sylow3lem4 18241 sylow3lem5 18242 sylow3lem6 18243 lsmval 18259 lsmelval 18260 lsmelvali 18261 lsmelvalm 18262 lsmsubg 18265 lsmub1 18267 lsmub2 18268 lsmless1 18270 lsmless2 18271 lsmless12 18272 lsmass 18279 subglsm 18282 lsmmod 18284 cntzrecd 18287 lsmcntz 18288 lsmcntzr 18289 lsmdisj2 18291 subgdisj1 18300 pj1f 18306 pj1id 18308 pj1lid 18310 pj1rid 18311 pj1ghm 18312 subgabl 18437 ablcntzd 18456 lsmcom 18457 dprdff 18607 dprdfadd 18615 dprdres 18623 dprdss 18624 subgdmdprd 18629 dprdcntz2 18633 dmdprdsplit2lem 18640 ablfacrp 18661 ablfac1eu 18668 pgpfac1lem1 18669 pgpfac1lem2 18670 pgpfac1lem3a 18671 pgpfac1lem3 18672 pgpfac1lem4 18673 pgpfac1lem5 18674 pgpfaclem1 18676 pgpfaclem2 18677 pgpfaclem3 18678 ablfaclem3 18682 ablfac2 18684 issubrg2 18998 issubrg3 19006 islss4 19160 mpllsslem 19633 phssip 20201 subgtgp 22106 subgntr 22107 opnsubg 22108 clssubg 22109 clsnsg 22110 cldsubg 22111 qustgpopn 22120 qustgphaus 22123 tgptsmscls 22150 subgnm 22634 subgngp 22636 lssnlm 22702 efgh 24482 efabl 24491 efsubm 24492 idomsubgmo 38274 |
Copyright terms: Public domain | W3C validator |