![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subgruhgrfun | Structured version Visualization version GIF version |
Description: The edge function of a subgraph of a hypergraph is a function. (Contributed by AV, 16-Nov-2020.) (Proof shortened by AV, 20-Nov-2020.) |
Ref | Expression |
---|---|
subgruhgrfun | ⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺) → Fun (iEdg‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2760 | . . 3 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
2 | 1 | uhgrfun 26181 | . 2 ⊢ (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺)) |
3 | subgrfun 26393 | . 2 ⊢ ((Fun (iEdg‘𝐺) ∧ 𝑆 SubGraph 𝐺) → Fun (iEdg‘𝑆)) | |
4 | 2, 3 | sylan 489 | 1 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺) → Fun (iEdg‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 2139 class class class wbr 4804 Fun wfun 6043 ‘cfv 6049 iEdgciedg 26095 UHGraphcuhgr 26171 SubGraph csubgr 26379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-fv 6057 df-uhgr 26173 df-subgr 26380 |
This theorem is referenced by: subgruhgredgd 26396 subuhgr 26398 subupgr 26399 subumgr 26400 subusgr 26401 |
Copyright terms: Public domain | W3C validator |