![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subgnm | Structured version Visualization version GIF version |
Description: The norm in a subgroup. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
subgngp.h | ⊢ 𝐻 = (𝐺 ↾s 𝐴) |
subgnm.n | ⊢ 𝑁 = (norm‘𝐺) |
subgnm.m | ⊢ 𝑀 = (norm‘𝐻) |
Ref | Expression |
---|---|
subgnm | ⊢ (𝐴 ∈ (SubGrp‘𝐺) → 𝑀 = (𝑁 ↾ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2651 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | 1 | subgss 17642 | . . . 4 ⊢ (𝐴 ∈ (SubGrp‘𝐺) → 𝐴 ⊆ (Base‘𝐺)) |
3 | 2 | resmptd 5487 | . . 3 ⊢ (𝐴 ∈ (SubGrp‘𝐺) → ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥(dist‘𝐺)(0g‘𝐺))) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ (𝑥(dist‘𝐺)(0g‘𝐺)))) |
4 | subgngp.h | . . . . 5 ⊢ 𝐻 = (𝐺 ↾s 𝐴) | |
5 | 4 | subgbas 17645 | . . . 4 ⊢ (𝐴 ∈ (SubGrp‘𝐺) → 𝐴 = (Base‘𝐻)) |
6 | eqid 2651 | . . . . . 6 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
7 | 4, 6 | ressds 16120 | . . . . 5 ⊢ (𝐴 ∈ (SubGrp‘𝐺) → (dist‘𝐺) = (dist‘𝐻)) |
8 | eqidd 2652 | . . . . 5 ⊢ (𝐴 ∈ (SubGrp‘𝐺) → 𝑥 = 𝑥) | |
9 | eqid 2651 | . . . . . 6 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
10 | 4, 9 | subg0 17647 | . . . . 5 ⊢ (𝐴 ∈ (SubGrp‘𝐺) → (0g‘𝐺) = (0g‘𝐻)) |
11 | 7, 8, 10 | oveq123d 6711 | . . . 4 ⊢ (𝐴 ∈ (SubGrp‘𝐺) → (𝑥(dist‘𝐺)(0g‘𝐺)) = (𝑥(dist‘𝐻)(0g‘𝐻))) |
12 | 5, 11 | mpteq12dv 4766 | . . 3 ⊢ (𝐴 ∈ (SubGrp‘𝐺) → (𝑥 ∈ 𝐴 ↦ (𝑥(dist‘𝐺)(0g‘𝐺))) = (𝑥 ∈ (Base‘𝐻) ↦ (𝑥(dist‘𝐻)(0g‘𝐻)))) |
13 | 3, 12 | eqtr2d 2686 | . 2 ⊢ (𝐴 ∈ (SubGrp‘𝐺) → (𝑥 ∈ (Base‘𝐻) ↦ (𝑥(dist‘𝐻)(0g‘𝐻))) = ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥(dist‘𝐺)(0g‘𝐺))) ↾ 𝐴)) |
14 | subgnm.m | . . 3 ⊢ 𝑀 = (norm‘𝐻) | |
15 | eqid 2651 | . . 3 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
16 | eqid 2651 | . . 3 ⊢ (0g‘𝐻) = (0g‘𝐻) | |
17 | eqid 2651 | . . 3 ⊢ (dist‘𝐻) = (dist‘𝐻) | |
18 | 14, 15, 16, 17 | nmfval 22440 | . 2 ⊢ 𝑀 = (𝑥 ∈ (Base‘𝐻) ↦ (𝑥(dist‘𝐻)(0g‘𝐻))) |
19 | subgnm.n | . . . 4 ⊢ 𝑁 = (norm‘𝐺) | |
20 | 19, 1, 9, 6 | nmfval 22440 | . . 3 ⊢ 𝑁 = (𝑥 ∈ (Base‘𝐺) ↦ (𝑥(dist‘𝐺)(0g‘𝐺))) |
21 | 20 | reseq1i 5424 | . 2 ⊢ (𝑁 ↾ 𝐴) = ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥(dist‘𝐺)(0g‘𝐺))) ↾ 𝐴) |
22 | 13, 18, 21 | 3eqtr4g 2710 | 1 ⊢ (𝐴 ∈ (SubGrp‘𝐺) → 𝑀 = (𝑁 ↾ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 ∈ wcel 2030 ↦ cmpt 4762 ↾ cres 5145 ‘cfv 5926 (class class class)co 6690 Basecbs 15904 ↾s cress 15905 distcds 15997 0gc0g 16147 SubGrpcsubg 17635 normcnm 22428 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-n0 11331 df-z 11416 df-dec 11532 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-ds 16011 df-0g 16149 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-grp 17472 df-subg 17638 df-nm 22434 |
This theorem is referenced by: subgnm2 22485 subrgnrg 22524 isncvsngp 22995 |
Copyright terms: Public domain | W3C validator |