![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subgmulgcl | Structured version Visualization version GIF version |
Description: Closure of the group multiple (exponentiation) operation in a subgroup. (Contributed by Mario Carneiro, 13-Jan-2015.) |
Ref | Expression |
---|---|
subgmulgcl.t | ⊢ · = (.g‘𝐺) |
Ref | Expression |
---|---|
subgmulgcl | ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2771 | . 2 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | subgmulgcl.t | . 2 ⊢ · = (.g‘𝐺) | |
3 | eqid 2771 | . 2 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
4 | subgrcl 17807 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
5 | 1 | subgss 17803 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
6 | 3 | subgcl 17812 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥(+g‘𝐺)𝑦) ∈ 𝑆) |
7 | eqid 2771 | . 2 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
8 | 7 | subg0cl 17810 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (0g‘𝐺) ∈ 𝑆) |
9 | eqid 2771 | . 2 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
10 | 9 | subginvcl 17811 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ 𝑆) → ((invg‘𝐺)‘𝑥) ∈ 𝑆) |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | mulgsubcl 17763 | 1 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 ‘cfv 6030 (class class class)co 6796 ℤcz 11584 Basecbs 16064 +gcplusg 16149 0gc0g 16308 Grpcgrp 17630 invgcminusg 17631 .gcmg 17748 SubGrpcsubg 17796 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-inf2 8706 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-om 7217 df-1st 7319 df-2nd 7320 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-er 7900 df-en 8114 df-dom 8115 df-sdom 8116 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-nn 11227 df-2 11285 df-n0 11500 df-z 11585 df-uz 11894 df-fz 12534 df-seq 13009 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-plusg 16162 df-0g 16310 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-grp 17633 df-minusg 17634 df-mulg 17749 df-subg 17799 |
This theorem is referenced by: subgmulg 17816 cycsubgss 17829 cycsubg2cl 17840 odf1o1 18194 pgpfac1lem2 18682 pgpfac1lem3a 18683 pgpfac1lem3 18684 zsssubrg 20019 |
Copyright terms: Public domain | W3C validator |