MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subglsm Structured version   Visualization version   GIF version

Theorem subglsm 18293
Description: The subgroup sum evaluated within a subgroup. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypotheses
Ref Expression
subglsm.h 𝐻 = (𝐺s 𝑆)
subglsm.s = (LSSum‘𝐺)
subglsm.a 𝐴 = (LSSum‘𝐻)
Assertion
Ref Expression
subglsm ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → (𝑇 𝑈) = (𝑇𝐴𝑈))

Proof of Theorem subglsm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp11 1245 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑥𝑇𝑦𝑈) → 𝑆 ∈ (SubGrp‘𝐺))
2 subglsm.h . . . . . . 7 𝐻 = (𝐺s 𝑆)
3 eqid 2771 . . . . . . 7 (+g𝐺) = (+g𝐺)
42, 3ressplusg 16201 . . . . . 6 (𝑆 ∈ (SubGrp‘𝐺) → (+g𝐺) = (+g𝐻))
51, 4syl 17 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑥𝑇𝑦𝑈) → (+g𝐺) = (+g𝐻))
65oveqd 6810 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑥𝑇𝑦𝑈) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐻)𝑦))
76mpt2eq3dva 6866 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → (𝑥𝑇, 𝑦𝑈 ↦ (𝑥(+g𝐺)𝑦)) = (𝑥𝑇, 𝑦𝑈 ↦ (𝑥(+g𝐻)𝑦)))
87rneqd 5491 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥(+g𝐺)𝑦)) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥(+g𝐻)𝑦)))
9 subgrcl 17807 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
1093ad2ant1 1127 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → 𝐺 ∈ Grp)
11 simp2 1131 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → 𝑇𝑆)
12 eqid 2771 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
1312subgss 17803 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
14133ad2ant1 1127 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → 𝑆 ⊆ (Base‘𝐺))
1511, 14sstrd 3762 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → 𝑇 ⊆ (Base‘𝐺))
16 simp3 1132 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → 𝑈𝑆)
1716, 14sstrd 3762 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → 𝑈 ⊆ (Base‘𝐺))
18 subglsm.s . . . 4 = (LSSum‘𝐺)
1912, 3, 18lsmvalx 18261 . . 3 ((𝐺 ∈ Grp ∧ 𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) → (𝑇 𝑈) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥(+g𝐺)𝑦)))
2010, 15, 17, 19syl3anc 1476 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → (𝑇 𝑈) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥(+g𝐺)𝑦)))
212subggrp 17805 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp)
22213ad2ant1 1127 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → 𝐻 ∈ Grp)
232subgbas 17806 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻))
24233ad2ant1 1127 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → 𝑆 = (Base‘𝐻))
2511, 24sseqtrd 3790 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → 𝑇 ⊆ (Base‘𝐻))
2616, 24sseqtrd 3790 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → 𝑈 ⊆ (Base‘𝐻))
27 eqid 2771 . . . 4 (Base‘𝐻) = (Base‘𝐻)
28 eqid 2771 . . . 4 (+g𝐻) = (+g𝐻)
29 subglsm.a . . . 4 𝐴 = (LSSum‘𝐻)
3027, 28, 29lsmvalx 18261 . . 3 ((𝐻 ∈ Grp ∧ 𝑇 ⊆ (Base‘𝐻) ∧ 𝑈 ⊆ (Base‘𝐻)) → (𝑇𝐴𝑈) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥(+g𝐻)𝑦)))
3122, 25, 26, 30syl3anc 1476 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → (𝑇𝐴𝑈) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥(+g𝐻)𝑦)))
328, 20, 313eqtr4d 2815 1 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → (𝑇 𝑈) = (𝑇𝐴𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1071   = wceq 1631  wcel 2145  wss 3723  ran crn 5250  cfv 6031  (class class class)co 6793  cmpt2 6795  Basecbs 16064  s cress 16065  +gcplusg 16149  Grpcgrp 17630  SubGrpcsubg 17796  LSSumclsm 18256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-subg 17799  df-lsm 18258
This theorem is referenced by:  pgpfaclem1  18688
  Copyright terms: Public domain W3C validator