![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subgid | Structured version Visualization version GIF version |
Description: A group is a subgroup of itself. (Contributed by Mario Carneiro, 7-Dec-2014.) |
Ref | Expression |
---|---|
issubg.b | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
subgid | ⊢ (𝐺 ∈ Grp → 𝐵 ∈ (SubGrp‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Grp) | |
2 | ssid 3773 | . . 3 ⊢ 𝐵 ⊆ 𝐵 | |
3 | 2 | a1i 11 | . 2 ⊢ (𝐺 ∈ Grp → 𝐵 ⊆ 𝐵) |
4 | issubg.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
5 | 4 | ressid 16142 | . . 3 ⊢ (𝐺 ∈ Grp → (𝐺 ↾s 𝐵) = 𝐺) |
6 | 5, 1 | eqeltrd 2850 | . 2 ⊢ (𝐺 ∈ Grp → (𝐺 ↾s 𝐵) ∈ Grp) |
7 | 4 | issubg 17802 | . 2 ⊢ (𝐵 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝐵 ⊆ 𝐵 ∧ (𝐺 ↾s 𝐵) ∈ Grp)) |
8 | 1, 3, 6, 7 | syl3anbrc 1428 | 1 ⊢ (𝐺 ∈ Grp → 𝐵 ∈ (SubGrp‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ∈ wcel 2145 ⊆ wss 3723 ‘cfv 6031 (class class class)co 6793 Basecbs 16064 ↾s cress 16065 Grpcgrp 17630 SubGrpcsubg 17796 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fv 6039 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-ress 16072 df-subg 17799 |
This theorem is referenced by: nsgid 17848 gaid2 17943 pgpfac1 18687 pgpfac 18691 ablfaclem2 18693 ablfac 18695 |
Copyright terms: Public domain | W3C validator |