![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subge0d | Structured version Visualization version GIF version |
Description: Nonnegative subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
leidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
subge0d | ⊢ (𝜑 → (0 ≤ (𝐴 − 𝐵) ↔ 𝐵 ≤ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | ltnegd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | subge0 10753 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (𝐴 − 𝐵) ↔ 𝐵 ≤ 𝐴)) | |
4 | 1, 2, 3 | syl2anc 696 | 1 ⊢ (𝜑 → (0 ≤ (𝐴 − 𝐵) ↔ 𝐵 ≤ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∈ wcel 2139 class class class wbr 4804 (class class class)co 6814 ℝcr 10147 0cc0 10148 ≤ cle 10287 − cmin 10478 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-po 5187 df-so 5188 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 |
This theorem is referenced by: ofsubge0 11231 uzsubsubfz 12576 modsubdir 12953 modsumfzodifsn 12957 serle 13070 discr 13215 bcval5 13319 fzomaxdiflem 14301 sqreulem 14318 amgm2 14328 climle 14589 rlimle 14597 iseralt 14634 fsumle 14750 cvgcmp 14767 binomrisefac 14992 smuval2 15426 pcz 15807 4sqlem15 15885 mndodconglem 18180 ipcau2 23253 pjthlem1 23428 ovolicc2lem4 23508 vitalilem2 23597 itg1lea 23698 dvlip 23975 dvge0 23988 dvle 23989 dvivthlem1 23990 dvfsumlem2 24009 dvfsumlem4 24011 loglesqrt 24719 emcllem6 24947 harmoniclbnd 24955 basellem9 25035 gausslemma2dlem0h 25308 lgseisenlem1 25320 vmadivsum 25391 rplogsumlem1 25393 dchrisumlem2 25399 rplogsum 25436 vmalogdivsum2 25447 selberg2lem 25459 logdivbnd 25465 pntpbnd2 25496 pntibndlem2 25500 pntlemg 25507 pntlemn 25509 ttgcontlem1 25985 brbtwn2 26005 axpaschlem 26040 axcontlem8 26071 crctcsh 26948 clwlkclwwlklem2a1 27136 clwlkclwwlklem2fv2 27140 pjhthlem1 28580 leop2 29313 pjssposi 29361 2sqmod 29978 fdvposle 31009 rddif2 32794 dnibndlem4 32798 broucube 33774 areacirclem2 33832 areacirclem4 33834 areacirclem5 33835 areacirc 33836 acongrep 38067 lptre2pt 40393 dvnmul 40679 dvnprodlem1 40682 dvnprodlem2 40683 stoweidlem1 40739 stoweidlem26 40764 stoweidlem62 40800 wallispilem4 40806 fourierdlem26 40871 fourierdlem42 40887 fourierdlem65 40909 fourierdlem75 40919 elaa2lem 40971 etransclem3 40975 etransclem7 40979 etransclem10 40982 etransclem20 40992 etransclem21 40993 etransclem22 40994 etransclem24 40996 etransclem27 40999 hoidmvlelem1 41333 nnpw2pmod 42905 |
Copyright terms: Public domain | W3C validator |