![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subgdisj2 | Structured version Visualization version GIF version |
Description: Vectors belonging to disjoint commuting subgroups are uniquely determined by their sum. (Contributed by NM, 12-Jul-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
Ref | Expression |
---|---|
subgdisj.p | ⊢ + = (+g‘𝐺) |
subgdisj.o | ⊢ 0 = (0g‘𝐺) |
subgdisj.z | ⊢ 𝑍 = (Cntz‘𝐺) |
subgdisj.t | ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) |
subgdisj.u | ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) |
subgdisj.i | ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) |
subgdisj.s | ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) |
subgdisj.a | ⊢ (𝜑 → 𝐴 ∈ 𝑇) |
subgdisj.c | ⊢ (𝜑 → 𝐶 ∈ 𝑇) |
subgdisj.b | ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
subgdisj.d | ⊢ (𝜑 → 𝐷 ∈ 𝑈) |
subgdisj.j | ⊢ (𝜑 → (𝐴 + 𝐵) = (𝐶 + 𝐷)) |
Ref | Expression |
---|---|
subgdisj2 | ⊢ (𝜑 → 𝐵 = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subgdisj.p | . 2 ⊢ + = (+g‘𝐺) | |
2 | subgdisj.o | . 2 ⊢ 0 = (0g‘𝐺) | |
3 | subgdisj.z | . 2 ⊢ 𝑍 = (Cntz‘𝐺) | |
4 | subgdisj.u | . 2 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) | |
5 | subgdisj.t | . 2 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) | |
6 | incom 3949 | . . 3 ⊢ (𝑇 ∩ 𝑈) = (𝑈 ∩ 𝑇) | |
7 | subgdisj.i | . . 3 ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) | |
8 | 6, 7 | syl5eqr 2809 | . 2 ⊢ (𝜑 → (𝑈 ∩ 𝑇) = { 0 }) |
9 | subgdisj.s | . . 3 ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) | |
10 | 3, 5, 4, 9 | cntzrecd 18312 | . 2 ⊢ (𝜑 → 𝑈 ⊆ (𝑍‘𝑇)) |
11 | subgdisj.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑈) | |
12 | subgdisj.d | . 2 ⊢ (𝜑 → 𝐷 ∈ 𝑈) | |
13 | subgdisj.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑇) | |
14 | subgdisj.c | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑇) | |
15 | subgdisj.j | . . 3 ⊢ (𝜑 → (𝐴 + 𝐵) = (𝐶 + 𝐷)) | |
16 | 9, 13 | sseldd 3746 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (𝑍‘𝑈)) |
17 | 1, 3 | cntzi 17983 | . . . 4 ⊢ ((𝐴 ∈ (𝑍‘𝑈) ∧ 𝐵 ∈ 𝑈) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
18 | 16, 11, 17 | syl2anc 696 | . . 3 ⊢ (𝜑 → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
19 | 9, 14 | sseldd 3746 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (𝑍‘𝑈)) |
20 | 1, 3 | cntzi 17983 | . . . 4 ⊢ ((𝐶 ∈ (𝑍‘𝑈) ∧ 𝐷 ∈ 𝑈) → (𝐶 + 𝐷) = (𝐷 + 𝐶)) |
21 | 19, 12, 20 | syl2anc 696 | . . 3 ⊢ (𝜑 → (𝐶 + 𝐷) = (𝐷 + 𝐶)) |
22 | 15, 18, 21 | 3eqtr3d 2803 | . 2 ⊢ (𝜑 → (𝐵 + 𝐴) = (𝐷 + 𝐶)) |
23 | 1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 22 | subgdisj1 18325 | 1 ⊢ (𝜑 → 𝐵 = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2140 ∩ cin 3715 ⊆ wss 3716 {csn 4322 ‘cfv 6050 (class class class)co 6815 +gcplusg 16164 0gc0g 16323 SubGrpcsubg 17810 Cntzccntz 17969 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rmo 3059 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-om 7233 df-1st 7335 df-2nd 7336 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-er 7914 df-en 8125 df-dom 8126 df-sdom 8127 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-nn 11234 df-2 11292 df-ndx 16083 df-slot 16084 df-base 16086 df-sets 16087 df-ress 16088 df-plusg 16177 df-0g 16325 df-mgm 17464 df-sgrp 17506 df-mnd 17517 df-grp 17647 df-minusg 17648 df-sbg 17649 df-subg 17813 df-cntz 17971 |
This theorem is referenced by: subgdisjb 18327 lvecindp 19361 lshpsmreu 34918 lshpkrlem5 34923 |
Copyright terms: Public domain | W3C validator |