MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgbas Structured version   Visualization version   GIF version

Theorem subgbas 17770
Description: The base of the restricted group in a subgroup. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypothesis
Ref Expression
subggrp.h 𝐻 = (𝐺s 𝑆)
Assertion
Ref Expression
subgbas (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻))

Proof of Theorem subgbas
StepHypRef Expression
1 eqid 2748 . . 3 (Base‘𝐺) = (Base‘𝐺)
21subgss 17767 . 2 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
3 subggrp.h . . 3 𝐻 = (𝐺s 𝑆)
43, 1ressbas2 16104 . 2 (𝑆 ⊆ (Base‘𝐺) → 𝑆 = (Base‘𝐻))
52, 4syl 17 1 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1620  wcel 2127  wss 3703  cfv 6037  (class class class)co 6801  Basecbs 16030  s cress 16031  SubGrpcsubg 17760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-i2m1 10167  ax-1ne0 10168  ax-rrecex 10171  ax-cnre 10172
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-ral 3043  df-rex 3044  df-reu 3045  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-om 7219  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-nn 11184  df-ndx 16033  df-slot 16034  df-base 16036  df-sets 16037  df-ress 16038  df-subg 17763
This theorem is referenced by:  subg0  17772  subginv  17773  subg0cl  17774  subginvcl  17775  subgcl  17776  subgsub  17778  subgmulg  17780  issubg2  17781  subsubg  17789  nmznsg  17810  subgga  17904  gasubg  17906  odsubdvds  18157  pgp0  18182  subgpgp  18183  sylow2blem2  18207  sylow2blem3  18208  slwhash  18210  fislw  18211  sylow3lem4  18216  sylow3lem6  18218  subglsm  18257  pj1ghm  18287  subgabl  18412  cycsubgcyg  18473  subgdmdprd  18604  ablfacrplem  18635  ablfac1c  18641  pgpfaclem1  18651  pgpfaclem2  18652  pgpfaclem3  18653  ablfaclem3  18657  ablfac2  18659  subrgbas  18962  issubrg2  18973  pj1lmhm  19273  phssip  20176  scmatsgrp1  20501  subgtgp  22081  subgnm  22609  subgngp  22611  lssnlm  22677  reefgim  24374  efabl  24466
  Copyright terms: Public domain W3C validator