Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgacs Structured version   Visualization version   GIF version

Theorem subgacs 17830
 Description: Subgroups are an algebraic closure system. (Contributed by Stefan O'Rear, 4-Apr-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypothesis
Ref Expression
subgacs.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
subgacs (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝐵))

Proof of Theorem subgacs
Dummy variables 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2760 . . . . . 6 (invg𝐺) = (invg𝐺)
21issubg3 17813 . . . . 5 (𝐺 ∈ Grp → (𝑠 ∈ (SubGrp‘𝐺) ↔ (𝑠 ∈ (SubMnd‘𝐺) ∧ ∀𝑥𝑠 ((invg𝐺)‘𝑥) ∈ 𝑠)))
3 subgacs.b . . . . . . . . . 10 𝐵 = (Base‘𝐺)
43submss 17551 . . . . . . . . 9 (𝑠 ∈ (SubMnd‘𝐺) → 𝑠𝐵)
54adantl 473 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑠 ∈ (SubMnd‘𝐺)) → 𝑠𝐵)
6 selpw 4309 . . . . . . . 8 (𝑠 ∈ 𝒫 𝐵𝑠𝐵)
75, 6sylibr 224 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑠 ∈ (SubMnd‘𝐺)) → 𝑠 ∈ 𝒫 𝐵)
8 eleq2w 2823 . . . . . . . . 9 (𝑦 = 𝑠 → (((invg𝐺)‘𝑥) ∈ 𝑦 ↔ ((invg𝐺)‘𝑥) ∈ 𝑠))
98raleqbi1dv 3285 . . . . . . . 8 (𝑦 = 𝑠 → (∀𝑥𝑦 ((invg𝐺)‘𝑥) ∈ 𝑦 ↔ ∀𝑥𝑠 ((invg𝐺)‘𝑥) ∈ 𝑠))
109elrab3 3505 . . . . . . 7 (𝑠 ∈ 𝒫 𝐵 → (𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 ((invg𝐺)‘𝑥) ∈ 𝑦} ↔ ∀𝑥𝑠 ((invg𝐺)‘𝑥) ∈ 𝑠))
117, 10syl 17 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑠 ∈ (SubMnd‘𝐺)) → (𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 ((invg𝐺)‘𝑥) ∈ 𝑦} ↔ ∀𝑥𝑠 ((invg𝐺)‘𝑥) ∈ 𝑠))
1211pm5.32da 676 . . . . 5 (𝐺 ∈ Grp → ((𝑠 ∈ (SubMnd‘𝐺) ∧ 𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 ((invg𝐺)‘𝑥) ∈ 𝑦}) ↔ (𝑠 ∈ (SubMnd‘𝐺) ∧ ∀𝑥𝑠 ((invg𝐺)‘𝑥) ∈ 𝑠)))
132, 12bitr4d 271 . . . 4 (𝐺 ∈ Grp → (𝑠 ∈ (SubGrp‘𝐺) ↔ (𝑠 ∈ (SubMnd‘𝐺) ∧ 𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 ((invg𝐺)‘𝑥) ∈ 𝑦})))
14 elin 3939 . . . 4 (𝑠 ∈ ((SubMnd‘𝐺) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 ((invg𝐺)‘𝑥) ∈ 𝑦}) ↔ (𝑠 ∈ (SubMnd‘𝐺) ∧ 𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 ((invg𝐺)‘𝑥) ∈ 𝑦}))
1513, 14syl6bbr 278 . . 3 (𝐺 ∈ Grp → (𝑠 ∈ (SubGrp‘𝐺) ↔ 𝑠 ∈ ((SubMnd‘𝐺) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 ((invg𝐺)‘𝑥) ∈ 𝑦})))
1615eqrdv 2758 . 2 (𝐺 ∈ Grp → (SubGrp‘𝐺) = ((SubMnd‘𝐺) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 ((invg𝐺)‘𝑥) ∈ 𝑦}))
17 fvex 6362 . . . . 5 (Base‘𝐺) ∈ V
183, 17eqeltri 2835 . . . 4 𝐵 ∈ V
19 mreacs 16520 . . . 4 (𝐵 ∈ V → (ACS‘𝐵) ∈ (Moore‘𝒫 𝐵))
2018, 19mp1i 13 . . 3 (𝐺 ∈ Grp → (ACS‘𝐵) ∈ (Moore‘𝒫 𝐵))
21 grpmnd 17630 . . . 4 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
223submacs 17566 . . . 4 (𝐺 ∈ Mnd → (SubMnd‘𝐺) ∈ (ACS‘𝐵))
2321, 22syl 17 . . 3 (𝐺 ∈ Grp → (SubMnd‘𝐺) ∈ (ACS‘𝐵))
243, 1grpinvcl 17668 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ((invg𝐺)‘𝑥) ∈ 𝐵)
2524ralrimiva 3104 . . . 4 (𝐺 ∈ Grp → ∀𝑥𝐵 ((invg𝐺)‘𝑥) ∈ 𝐵)
26 acsfn1 16523 . . . 4 ((𝐵 ∈ V ∧ ∀𝑥𝐵 ((invg𝐺)‘𝑥) ∈ 𝐵) → {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 ((invg𝐺)‘𝑥) ∈ 𝑦} ∈ (ACS‘𝐵))
2718, 25, 26sylancr 698 . . 3 (𝐺 ∈ Grp → {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 ((invg𝐺)‘𝑥) ∈ 𝑦} ∈ (ACS‘𝐵))
28 mreincl 16461 . . 3 (((ACS‘𝐵) ∈ (Moore‘𝒫 𝐵) ∧ (SubMnd‘𝐺) ∈ (ACS‘𝐵) ∧ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 ((invg𝐺)‘𝑥) ∈ 𝑦} ∈ (ACS‘𝐵)) → ((SubMnd‘𝐺) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 ((invg𝐺)‘𝑥) ∈ 𝑦}) ∈ (ACS‘𝐵))
2920, 23, 27, 28syl3anc 1477 . 2 (𝐺 ∈ Grp → ((SubMnd‘𝐺) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 ((invg𝐺)‘𝑥) ∈ 𝑦}) ∈ (ACS‘𝐵))
3016, 29eqeltrd 2839 1 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1632   ∈ wcel 2139  ∀wral 3050  {crab 3054  Vcvv 3340   ∩ cin 3714   ⊆ wss 3715  𝒫 cpw 4302  ‘cfv 6049  Basecbs 16059  Moorecmre 16444  ACScacs 16447  Mndcmnd 17495  SubMndcsubmnd 17535  Grpcgrp 17623  invgcminusg 17624  SubGrpcsubg 17789 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-2 11271  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-0g 16304  df-mre 16448  df-mrc 16449  df-acs 16451  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-grp 17626  df-minusg 17627  df-subg 17792 This theorem is referenced by:  nsgacs  17831  cycsubg2  17832  cycsubg2cl  17833  odf1o1  18187  lsmmod  18288  dmdprdd  18598  dprdfeq0  18621  dprdspan  18626  dprdres  18627  dprdss  18628  dprdz  18629  subgdmdprd  18633  subgdprd  18634  dprdsn  18635  dprd2dlem1  18640  dprd2da  18641  dmdprdsplit2lem  18644  ablfac1b  18669  pgpfac1lem1  18673  pgpfac1lem2  18674  pgpfac1lem3a  18675  pgpfac1lem3  18676  pgpfac1lem4  18677  pgpfac1lem5  18678  pgpfaclem1  18680  pgpfaclem2  18681  lssacs  19169  subrgacs  38272  proot1mul  38279  proot1hash  38280
 Copyright terms: Public domain W3C validator