MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgabl Structured version   Visualization version   GIF version

Theorem subgabl 18362
Description: A subgroup of an abelian group is also abelian. (Contributed by Mario Carneiro, 3-Dec-2014.)
Hypothesis
Ref Expression
subgabl.h 𝐻 = (𝐺s 𝑆)
Assertion
Ref Expression
subgabl ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ Abel)

Proof of Theorem subgabl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subgabl.h . . . 4 𝐻 = (𝐺s 𝑆)
21subgbas 17720 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻))
32adantl 473 . 2 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 = (Base‘𝐻))
4 eqid 2724 . . . 4 (+g𝐺) = (+g𝐺)
51, 4ressplusg 16116 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → (+g𝐺) = (+g𝐻))
65adantl 473 . 2 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (+g𝐺) = (+g𝐻))
71subggrp 17719 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp)
87adantl 473 . 2 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ Grp)
9 simp1l 1216 . . 3 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑆𝑦𝑆) → 𝐺 ∈ Abel)
10 simp1r 1217 . . . . 5 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑆𝑦𝑆) → 𝑆 ∈ (SubGrp‘𝐺))
11 eqid 2724 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
1211subgss 17717 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
1310, 12syl 17 . . . 4 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑆𝑦𝑆) → 𝑆 ⊆ (Base‘𝐺))
14 simp2 1129 . . . 4 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑆𝑦𝑆) → 𝑥𝑆)
1513, 14sseldd 3710 . . 3 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑆𝑦𝑆) → 𝑥 ∈ (Base‘𝐺))
16 simp3 1130 . . . 4 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑆𝑦𝑆) → 𝑦𝑆)
1713, 16sseldd 3710 . . 3 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑆𝑦𝑆) → 𝑦 ∈ (Base‘𝐺))
1811, 4ablcom 18331 . . 3 ((𝐺 ∈ Abel ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
199, 15, 17, 18syl3anc 1439 . 2 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑆𝑦𝑆) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
203, 6, 8, 19isabld 18327 1 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ Abel)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1596  wcel 2103  wss 3680  cfv 6001  (class class class)co 6765  Basecbs 15980  s cress 15981  +gcplusg 16064  Grpcgrp 17544  SubGrpcsubg 17710  Abelcabl 18315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-om 7183  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-er 7862  df-en 8073  df-dom 8074  df-sdom 8075  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-nn 11134  df-2 11192  df-ndx 15983  df-slot 15984  df-base 15986  df-sets 15987  df-ress 15988  df-plusg 16077  df-grp 17547  df-subg 17713  df-cmn 18316  df-abl 18317
This theorem is referenced by:  pgpfaclem2  18602  pgpfaclem3  18603  ablfaclem3  18607  efabl  24416  lidlabl  42351
  Copyright terms: Public domain W3C validator