![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subeq0 | Structured version Visualization version GIF version |
Description: If the difference between two numbers is zero, they are equal. (Contributed by NM, 16-Nov-1999.) |
Ref | Expression |
---|---|
subeq0 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subid 10338 | . . . 4 ⊢ (𝐵 ∈ ℂ → (𝐵 − 𝐵) = 0) | |
2 | 1 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 − 𝐵) = 0) |
3 | 2 | eqeq2d 2661 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) = (𝐵 − 𝐵) ↔ (𝐴 − 𝐵) = 0)) |
4 | subcan2 10344 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) = (𝐵 − 𝐵) ↔ 𝐴 = 𝐵)) | |
5 | 4 | 3anidm23 1425 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) = (𝐵 − 𝐵) ↔ 𝐴 = 𝐵)) |
6 | 3, 5 | bitr3d 270 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 (class class class)co 6690 ℂcc 9972 0cc0 9974 − cmin 10304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-po 5064 df-so 5065 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-ltxr 10117 df-sub 10306 |
This theorem is referenced by: subeq0i 10399 subeq0d 10438 subne0d 10439 subeq0ad 10440 mulcan1g 10718 div2sub 10888 cju 11054 nn0sub 11381 addmodlteq 12785 geoserg 14642 geolim 14645 geolim2 14646 georeclim 14647 geoisum1c 14655 tanadd 14941 fzocongeq 15093 divalglem8 15170 mndodcongi 18008 odf1 18025 odf1o1 18033 cnmet 22622 iccpnfhmeo 22791 plyremlem 24104 geolim3 24139 abelthlem2 24231 abelthlem7 24237 efeq1 24320 tanregt0 24330 logtayl 24451 ang180lem1 24584 ang180lem2 24585 ang180lem3 24586 lawcos 24591 isosctrlem1 24593 isosctrlem2 24594 atandm2 24649 atandm4 24651 2efiatan 24690 tanatan 24691 dvatan 24707 mumullem2 24951 mersenne 24997 dchrsum2 25038 sumdchr2 25040 axcgrid 25841 axcontlem2 25890 hvmulcan2 28058 poimirlem13 33552 rencldnfilem 37701 qirropth 37790 dvconstbi 38850 isosctrlem1ALT 39484 |
Copyright terms: Public domain | W3C validator |