MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subaddrii Structured version   Visualization version   GIF version

Theorem subaddrii 10571
Description: Relationship between subtraction and addition. (Contributed by NM, 16-Dec-2006.)
Hypotheses
Ref Expression
negidi.1 𝐴 ∈ ℂ
pncan3i.2 𝐵 ∈ ℂ
subadd.3 𝐶 ∈ ℂ
subaddri.4 (𝐵 + 𝐶) = 𝐴
Assertion
Ref Expression
subaddrii (𝐴𝐵) = 𝐶

Proof of Theorem subaddrii
StepHypRef Expression
1 subaddri.4 . 2 (𝐵 + 𝐶) = 𝐴
2 negidi.1 . . 3 𝐴 ∈ ℂ
3 pncan3i.2 . . 3 𝐵 ∈ ℂ
4 subadd.3 . . 3 𝐶 ∈ ℂ
52, 3, 4subaddi 10569 . 2 ((𝐴𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴)
61, 5mpbir 221 1 (𝐴𝐵) = 𝐶
Colors of variables: wff setvar class
Syntax hints:   = wceq 1630  wcel 2144  (class class class)co 6792  cc 10135   + caddc 10140  cmin 10467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-po 5170  df-so 5171  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-pnf 10277  df-mnf 10278  df-ltxr 10280  df-sub 10469
This theorem is referenced by:  2m1e1  11336  halfthird  11885  5recm6rec  11886  fzo0to42pr  12762  4bc3eq4  13318  4bc2eq6  13319  0.999...OLD  14819  bpoly3  14994  bpoly4  14995  cos1bnd  15122  cos2bnd  15123  pythagtriplem1  15727  iblitg  23754  cosq14gt0  24482  cosq14ge0  24483  sincos6thpi  24487  pige3  24489  cosne0  24496  resinf1o  24502  logimul  24580  ang180lem2  24760  mcubic  24794  quartlem1  24804  acosneg  24834  acosbnd  24847  atanlogsublem  24862  chtub  25157  lgsdir2lem1  25270  lgsdir2lem2  25271  lgsdir2lem3  25272  addltmulALT  29639  fib5  30801  fib6  30802  hgt750lem  31063  problem3  31893  problem4  31894  lhe4.4ex1a  39047  stoweidlem13  40741  stoweidlem26  40754  wallispilem4  40796  41prothprmlem2  42053  linevalexample  42702  5m4e1  43064
  Copyright terms: Public domain W3C validator