![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sub32d | Structured version Visualization version GIF version |
Description: Swap the second and third terms in a double subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
subaddd.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
Ref | Expression |
---|---|
sub32d | ⊢ (𝜑 → ((𝐴 − 𝐵) − 𝐶) = ((𝐴 − 𝐶) − 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | pncand.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | subaddd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
4 | sub32 10527 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) − 𝐶) = ((𝐴 − 𝐶) − 𝐵)) | |
5 | 1, 2, 3, 4 | syl3anc 1477 | 1 ⊢ (𝜑 → ((𝐴 − 𝐵) − 𝐶) = ((𝐴 − 𝐶) − 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 (class class class)co 6814 ℂcc 10146 − cmin 10478 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-po 5187 df-so 5188 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-pnf 10288 df-mnf 10289 df-ltxr 10291 df-sub 10480 |
This theorem is referenced by: hashfzo 13428 lswccatn0lsw 13583 revccat 13735 repswrevw 13753 isercolllem1 14614 iseralt 14634 prmdiv 15712 fldivp1 15823 efgredleme 18376 cphipval 23262 dvexp3 23960 dvfsumlem2 24009 isosctrlem2 24769 harmonicbnd4 24957 logfacrlim 25169 logexprlim 25170 lgsquadlem1 25325 rpvmasumlem 25396 dchrisumlem1 25398 mulog2sumlem3 25445 vmalogdivsum 25448 selberg2lem 25459 selberg2 25460 selberg4 25470 brbtwn2 26005 colinearalglem2 26007 colinearalglem4 26009 ipval2 27892 bj-bary1lem 33489 jm3.1lem1 38104 jm3.1lem2 38105 fourierdlem42 40887 fourierdlem89 40933 fourierdlem90 40934 fourierdlem91 40935 sigarperm 41573 pwdif 42029 m1modmmod 42844 |
Copyright terms: Public domain | W3C validator |