MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sub32d Structured version   Visualization version   GIF version

Theorem sub32d 10636
Description: Swap the second and third terms in a double subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
negidd.1 (𝜑𝐴 ∈ ℂ)
pncand.2 (𝜑𝐵 ∈ ℂ)
subaddd.3 (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
sub32d (𝜑 → ((𝐴𝐵) − 𝐶) = ((𝐴𝐶) − 𝐵))

Proof of Theorem sub32d
StepHypRef Expression
1 negidd.1 . 2 (𝜑𝐴 ∈ ℂ)
2 pncand.2 . 2 (𝜑𝐵 ∈ ℂ)
3 subaddd.3 . 2 (𝜑𝐶 ∈ ℂ)
4 sub32 10527 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐵) − 𝐶) = ((𝐴𝐶) − 𝐵))
51, 2, 3, 4syl3anc 1477 1 (𝜑 → ((𝐴𝐵) − 𝐶) = ((𝐴𝐶) − 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1632  wcel 2139  (class class class)co 6814  cc 10146  cmin 10478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-ltxr 10291  df-sub 10480
This theorem is referenced by:  hashfzo  13428  lswccatn0lsw  13583  revccat  13735  repswrevw  13753  isercolllem1  14614  iseralt  14634  prmdiv  15712  fldivp1  15823  efgredleme  18376  cphipval  23262  dvexp3  23960  dvfsumlem2  24009  isosctrlem2  24769  harmonicbnd4  24957  logfacrlim  25169  logexprlim  25170  lgsquadlem1  25325  rpvmasumlem  25396  dchrisumlem1  25398  mulog2sumlem3  25445  vmalogdivsum  25448  selberg2lem  25459  selberg2  25460  selberg4  25470  brbtwn2  26005  colinearalglem2  26007  colinearalglem4  26009  ipval2  27892  bj-bary1lem  33489  jm3.1lem1  38104  jm3.1lem2  38105  fourierdlem42  40887  fourierdlem89  40933  fourierdlem90  40934  fourierdlem91  40935  sigarperm  41573  pwdif  42029  m1modmmod  42844
  Copyright terms: Public domain W3C validator