![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > structgrssvtxlemOLD | Structured version Visualization version GIF version |
Description: Obsolete version of structgrssvtxlem 26133 as of 14-Nov-2021. (Contributed by AV, 14-Oct-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
structgrssvtxOLD.g | ⊢ (𝜑 → 𝐺 ∈ 𝑋) |
structgrssvtxOLD.f | ⊢ (𝜑 → Fun 𝐺) |
structgrssvtxOLD.v | ⊢ (𝜑 → 𝑉 ∈ 𝑌) |
structgrssvtxOLD.e | ⊢ (𝜑 → 𝐸 ∈ 𝑍) |
structgrssvtxOLD.s | ⊢ (𝜑 → {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), 𝐸〉} ⊆ 𝐺) |
Ref | Expression |
---|---|
structgrssvtxlemOLD | ⊢ (𝜑 → 2 ≤ (♯‘dom 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | structgrssvtxOLD.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑋) | |
2 | dmexg 7264 | . . 3 ⊢ (𝐺 ∈ 𝑋 → dom 𝐺 ∈ V) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → dom 𝐺 ∈ V) |
4 | structgrssvtxOLD.v | . . . . 5 ⊢ (𝜑 → 𝑉 ∈ 𝑌) | |
5 | structgrssvtxOLD.e | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ 𝑍) | |
6 | dmpropg 5768 | . . . . 5 ⊢ ((𝑉 ∈ 𝑌 ∧ 𝐸 ∈ 𝑍) → dom {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), 𝐸〉} = {(Base‘ndx), (.ef‘ndx)}) | |
7 | 4, 5, 6 | syl2anc 696 | . . . 4 ⊢ (𝜑 → dom {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), 𝐸〉} = {(Base‘ndx), (.ef‘ndx)}) |
8 | structgrssvtxOLD.s | . . . . 5 ⊢ (𝜑 → {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), 𝐸〉} ⊆ 𝐺) | |
9 | dmss 5479 | . . . . 5 ⊢ ({〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), 𝐸〉} ⊆ 𝐺 → dom {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), 𝐸〉} ⊆ dom 𝐺) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝜑 → dom {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), 𝐸〉} ⊆ dom 𝐺) |
11 | 7, 10 | eqsstr3d 3782 | . . 3 ⊢ (𝜑 → {(Base‘ndx), (.ef‘ndx)} ⊆ dom 𝐺) |
12 | fvex 6364 | . . . . 5 ⊢ (Base‘ndx) ∈ V | |
13 | fvex 6364 | . . . . 5 ⊢ (.ef‘ndx) ∈ V | |
14 | 12, 13 | prss 4497 | . . . 4 ⊢ (((Base‘ndx) ∈ dom 𝐺 ∧ (.ef‘ndx) ∈ dom 𝐺) ↔ {(Base‘ndx), (.ef‘ndx)} ⊆ dom 𝐺) |
15 | slotsbaseefdif 26094 | . . . . . 6 ⊢ (Base‘ndx) ≠ (.ef‘ndx) | |
16 | neeq1 2995 | . . . . . . 7 ⊢ (𝑎 = (Base‘ndx) → (𝑎 ≠ 𝑏 ↔ (Base‘ndx) ≠ 𝑏)) | |
17 | neeq2 2996 | . . . . . . 7 ⊢ (𝑏 = (.ef‘ndx) → ((Base‘ndx) ≠ 𝑏 ↔ (Base‘ndx) ≠ (.ef‘ndx))) | |
18 | 16, 17 | rspc2ev 3464 | . . . . . 6 ⊢ (((Base‘ndx) ∈ dom 𝐺 ∧ (.ef‘ndx) ∈ dom 𝐺 ∧ (Base‘ndx) ≠ (.ef‘ndx)) → ∃𝑎 ∈ dom 𝐺∃𝑏 ∈ dom 𝐺 𝑎 ≠ 𝑏) |
19 | 15, 18 | mp3an3 1562 | . . . . 5 ⊢ (((Base‘ndx) ∈ dom 𝐺 ∧ (.ef‘ndx) ∈ dom 𝐺) → ∃𝑎 ∈ dom 𝐺∃𝑏 ∈ dom 𝐺 𝑎 ≠ 𝑏) |
20 | 19 | a1i 11 | . . . 4 ⊢ (𝜑 → (((Base‘ndx) ∈ dom 𝐺 ∧ (.ef‘ndx) ∈ dom 𝐺) → ∃𝑎 ∈ dom 𝐺∃𝑏 ∈ dom 𝐺 𝑎 ≠ 𝑏)) |
21 | 14, 20 | syl5bir 233 | . . 3 ⊢ (𝜑 → ({(Base‘ndx), (.ef‘ndx)} ⊆ dom 𝐺 → ∃𝑎 ∈ dom 𝐺∃𝑏 ∈ dom 𝐺 𝑎 ≠ 𝑏)) |
22 | 11, 21 | mpd 15 | . 2 ⊢ (𝜑 → ∃𝑎 ∈ dom 𝐺∃𝑏 ∈ dom 𝐺 𝑎 ≠ 𝑏) |
23 | hashge2el2difr 13476 | . 2 ⊢ ((dom 𝐺 ∈ V ∧ ∃𝑎 ∈ dom 𝐺∃𝑏 ∈ dom 𝐺 𝑎 ≠ 𝑏) → 2 ≤ (♯‘dom 𝐺)) | |
24 | 3, 22, 23 | syl2anc 696 | 1 ⊢ (𝜑 → 2 ≤ (♯‘dom 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2140 ≠ wne 2933 ∃wrex 3052 Vcvv 3341 ⊆ wss 3716 {cpr 4324 〈cop 4328 class class class wbr 4805 dom cdm 5267 Fun wfun 6044 ‘cfv 6050 ≤ cle 10288 2c2 11283 ♯chash 13332 ndxcnx 16077 Basecbs 16080 .efcedgf 26088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rmo 3059 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-int 4629 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-om 7233 df-1st 7335 df-2nd 7336 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-1o 7731 df-oadd 7735 df-er 7914 df-en 8125 df-dom 8126 df-sdom 8127 df-fin 8128 df-card 8976 df-cda 9203 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-nn 11234 df-2 11292 df-3 11293 df-4 11294 df-5 11295 df-6 11296 df-7 11297 df-8 11298 df-9 11299 df-n0 11506 df-xnn0 11577 df-z 11591 df-dec 11707 df-uz 11901 df-fz 12541 df-hash 13333 df-ndx 16083 df-slot 16084 df-base 16086 df-edgf 26089 |
This theorem is referenced by: structgrssvtxOLD 26137 structgrssiedgOLD 26138 |
Copyright terms: Public domain | W3C validator |