![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > strfvi | Structured version Visualization version GIF version |
Description: Structure slot extractors cannot distinguish between proper classes and ∅, so they can be protected using the identity function. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
Ref | Expression |
---|---|
strfvi.e | ⊢ 𝐸 = Slot 𝑁 |
strfvi.x | ⊢ 𝑋 = (𝐸‘𝑆) |
Ref | Expression |
---|---|
strfvi | ⊢ 𝑋 = (𝐸‘( I ‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strfvi.x | . 2 ⊢ 𝑋 = (𝐸‘𝑆) | |
2 | fvi 6419 | . . . . 5 ⊢ (𝑆 ∈ V → ( I ‘𝑆) = 𝑆) | |
3 | 2 | eqcomd 2767 | . . . 4 ⊢ (𝑆 ∈ V → 𝑆 = ( I ‘𝑆)) |
4 | 3 | fveq2d 6358 | . . 3 ⊢ (𝑆 ∈ V → (𝐸‘𝑆) = (𝐸‘( I ‘𝑆))) |
5 | strfvi.e | . . . . 5 ⊢ 𝐸 = Slot 𝑁 | |
6 | 5 | str0 16134 | . . . 4 ⊢ ∅ = (𝐸‘∅) |
7 | fvprc 6348 | . . . 4 ⊢ (¬ 𝑆 ∈ V → (𝐸‘𝑆) = ∅) | |
8 | fvprc 6348 | . . . . 5 ⊢ (¬ 𝑆 ∈ V → ( I ‘𝑆) = ∅) | |
9 | 8 | fveq2d 6358 | . . . 4 ⊢ (¬ 𝑆 ∈ V → (𝐸‘( I ‘𝑆)) = (𝐸‘∅)) |
10 | 6, 7, 9 | 3eqtr4a 2821 | . . 3 ⊢ (¬ 𝑆 ∈ V → (𝐸‘𝑆) = (𝐸‘( I ‘𝑆))) |
11 | 4, 10 | pm2.61i 176 | . 2 ⊢ (𝐸‘𝑆) = (𝐸‘( I ‘𝑆)) |
12 | 1, 11 | eqtri 2783 | 1 ⊢ 𝑋 = (𝐸‘( I ‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1632 ∈ wcel 2140 Vcvv 3341 ∅c0 4059 I cid 5174 ‘cfv 6050 Slot cslot 16079 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ral 3056 df-rex 3057 df-rab 3060 df-v 3343 df-sbc 3578 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-br 4806 df-opab 4866 df-mpt 4883 df-id 5175 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-iota 6013 df-fun 6052 df-fv 6058 df-slot 16084 |
This theorem is referenced by: rlmscaf 19431 islidl 19434 lidlrsppropd 19453 rspsn 19477 ply1tmcl 19865 ply1scltm 19874 ply1sclf 19878 ply1scl0 19883 ply1scl1 19885 nrgtrg 22716 |
Copyright terms: Public domain | W3C validator |