![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > strfv | Structured version Visualization version GIF version |
Description: Extract a structure component 𝐶 (such as the base set) from a structure 𝑆 (such as a member of Poset, df-poset 17068) with a component extractor 𝐸 (such as the base set extractor df-base 15986). By virtue of ndxid 16006, this can be done without having to refer to the hard-coded numeric index of 𝐸. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
Ref | Expression |
---|---|
strfv.s | ⊢ 𝑆 Struct 𝑋 |
strfv.e | ⊢ 𝐸 = Slot (𝐸‘ndx) |
strfv.n | ⊢ {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆 |
Ref | Expression |
---|---|
strfv | ⊢ (𝐶 ∈ 𝑉 → 𝐶 = (𝐸‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strfv.s | . . 3 ⊢ 𝑆 Struct 𝑋 | |
2 | structex 15991 | . . 3 ⊢ (𝑆 Struct 𝑋 → 𝑆 ∈ V) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ 𝑆 ∈ V |
4 | 1 | structfun 15996 | . 2 ⊢ Fun ◡◡𝑆 |
5 | strfv.e | . 2 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
6 | strfv.n | . . 3 ⊢ {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆 | |
7 | opex 5037 | . . . 4 ⊢ 〈(𝐸‘ndx), 𝐶〉 ∈ V | |
8 | 7 | snss 4423 | . . 3 ⊢ (〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 ↔ {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆) |
9 | 6, 8 | mpbir 221 | . 2 ⊢ 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 |
10 | 3, 4, 5, 9 | strfv2 16029 | 1 ⊢ (𝐶 ∈ 𝑉 → 𝐶 = (𝐸‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1596 ∈ wcel 2103 Vcvv 3304 ⊆ wss 3680 {csn 4285 〈cop 4291 class class class wbr 4760 ‘cfv 6001 Struct cstr 15976 ndxcnx 15977 Slot cslot 15979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 ax-cnex 10105 ax-resscn 10106 ax-1cn 10107 ax-icn 10108 ax-addcl 10109 ax-addrcl 10110 ax-mulcl 10111 ax-mulrcl 10112 ax-mulcom 10113 ax-addass 10114 ax-mulass 10115 ax-distr 10116 ax-i2m1 10117 ax-1ne0 10118 ax-1rid 10119 ax-rnegex 10120 ax-rrecex 10121 ax-cnre 10122 ax-pre-lttri 10123 ax-pre-lttrn 10124 ax-pre-ltadd 10125 ax-pre-mulgt0 10126 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-nel 3000 df-ral 3019 df-rex 3020 df-reu 3021 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-pss 3696 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-tp 4290 df-op 4292 df-uni 4545 df-int 4584 df-iun 4630 df-br 4761 df-opab 4821 df-mpt 4838 df-tr 4861 df-id 5128 df-eprel 5133 df-po 5139 df-so 5140 df-fr 5177 df-we 5179 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-pred 5793 df-ord 5839 df-on 5840 df-lim 5841 df-suc 5842 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-riota 6726 df-ov 6768 df-oprab 6769 df-mpt2 6770 df-om 7183 df-1st 7285 df-2nd 7286 df-wrecs 7527 df-recs 7588 df-rdg 7626 df-1o 7680 df-oadd 7684 df-er 7862 df-en 8073 df-dom 8074 df-sdom 8075 df-fin 8076 df-pnf 10189 df-mnf 10190 df-xr 10191 df-ltxr 10192 df-le 10193 df-sub 10381 df-neg 10382 df-nn 11134 df-n0 11406 df-z 11491 df-uz 11801 df-fz 12441 df-struct 15982 df-slot 15984 |
This theorem is referenced by: strfv3 16031 1strbas 16103 2strbas 16107 2strop 16108 2strbas1 16110 2strop1 16111 rngbase 16124 rngplusg 16125 rngmulr 16126 srngbase 16132 srngplusg 16133 srngmulr 16134 srnginvl 16135 lmodbase 16141 lmodplusg 16142 lmodsca 16143 lmodvsca 16144 ipsbase 16148 ipsaddg 16149 ipsmulr 16150 ipssca 16151 ipsvsca 16152 ipsip 16153 phlbase 16158 phlplusg 16159 phlsca 16160 phlvsca 16161 phlip 16162 topgrpbas 16166 topgrpplusg 16167 topgrptset 16168 otpsbas 16175 otpstset 16176 otpsle 16177 otpsbasOLD 16179 otpstsetOLD 16180 otpsleOLD 16181 odrngbas 16190 odrngplusg 16191 odrngmulr 16192 odrngtset 16193 odrngle 16194 odrngds 16195 imassca 16302 imastset 16305 fuccofval 16741 setcbas 16850 catchomfval 16870 catccofval 16872 estrcbas 16887 ipobas 17277 ipolerval 17278 ipotset 17279 psrbas 19501 psrplusg 19504 psrmulr 19507 psrsca 19512 psrvscafval 19513 cnfldbas 19873 cnfldadd 19874 cnfldmul 19875 cnfldcj 19876 cnfldtset 19877 cnfldle 19878 cnfldds 19879 cnfldunif 19880 trkgbas 25464 trkgdist 25465 trkgitv 25466 algbase 38167 algaddg 38168 algmulr 38169 algsca 38170 algvsca 38171 rngchomfvalALTV 42411 rngccofvalALTV 42414 ringchomfvalALTV 42474 ringccofvalALTV 42477 |
Copyright terms: Public domain | W3C validator |