![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > str0 | Structured version Visualization version GIF version |
Description: All components of the empty set are empty sets. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 7-Dec-2014.) |
Ref | Expression |
---|---|
str0.a | ⊢ 𝐹 = Slot 𝐼 |
Ref | Expression |
---|---|
str0 | ⊢ ∅ = (𝐹‘∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4942 | . . 3 ⊢ ∅ ∈ V | |
2 | str0.a | . . 3 ⊢ 𝐹 = Slot 𝐼 | |
3 | 1, 2 | strfvn 16101 | . 2 ⊢ (𝐹‘∅) = (∅‘𝐼) |
4 | 0fv 6389 | . 2 ⊢ (∅‘𝐼) = ∅ | |
5 | 3, 4 | eqtr2i 2783 | 1 ⊢ ∅ = (𝐹‘∅) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 ∅c0 4058 ‘cfv 6049 Slot cslot 16078 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-iota 6012 df-fun 6051 df-fv 6057 df-slot 16083 |
This theorem is referenced by: base0 16134 strfvi 16135 setsnid 16137 resslem 16155 oppchomfval 16595 fuchom 16842 xpchomfval 17040 xpccofval 17043 0pos 17175 oduleval 17352 frmdplusg 17612 oppgplusfval 17998 symgplusg 18029 mgpplusg 18713 opprmulfval 18845 sralem 19399 srasca 19403 sravsca 19404 sraip 19405 psrplusg 19603 psrmulr 19606 psrvscafval 19612 opsrle 19697 ply1plusgfvi 19834 psr1sca2 19843 ply1sca2 19846 zlmlem 20087 zlmvsca 20092 thlle 20263 thloc 20265 resstopn 21212 tnglem 22665 tngds 22673 ttglem 25976 iedgval0 26152 resvlem 30161 mendplusgfval 38275 mendmulrfval 38277 mendsca 38279 mendvscafval 38280 |
Copyright terms: Public domain | W3C validator |