Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem7 Structured version   Visualization version   GIF version

Theorem stoweidlem7 40719
 Description: This lemma is used to prove that qn as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 91, (at the top of page 91), is such that qn < ε on 𝑇 ∖ 𝑈, and qn > 1 - ε on 𝑉. Here it is proven that, for 𝑛 large enough, 1-(k*δ/2)^n > 1 - ε , and 1/(k*δ)^n < ε. The variable 𝐴 is used to represent (k*δ) in the paper, and 𝐵 is used to represent (k*δ/2). (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem7.1 𝐹 = (𝑖 ∈ ℕ0 ↦ ((1 / 𝐴)↑𝑖))
stoweidlem7.2 𝐺 = (𝑖 ∈ ℕ0 ↦ (𝐵𝑖))
stoweidlem7.3 (𝜑𝐴 ∈ ℝ)
stoweidlem7.4 (𝜑 → 1 < 𝐴)
stoweidlem7.5 (𝜑𝐵 ∈ ℝ+)
stoweidlem7.6 (𝜑𝐵 < 1)
stoweidlem7.7 (𝜑𝐸 ∈ ℝ+)
Assertion
Ref Expression
stoweidlem7 (𝜑 → ∃𝑛 ∈ ℕ ((1 − 𝐸) < (1 − (𝐵𝑛)) ∧ (1 / (𝐴𝑛)) < 𝐸))
Distinct variable groups:   𝑖,𝑛,𝐴   𝐵,𝑖,𝑛   𝑖,𝐸,𝑛   𝜑,𝑖,𝑛   𝑛,𝐹   𝑛,𝐺
Allowed substitution hints:   𝐹(𝑖)   𝐺(𝑖)

Proof of Theorem stoweidlem7
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnuz 11908 . . . . 5 ℕ = (ℤ‘1)
2 1zzd 11592 . . . . 5 (𝜑 → 1 ∈ ℤ)
3 stoweidlem7.7 . . . . 5 (𝜑𝐸 ∈ ℝ+)
4 stoweidlem7.2 . . . . . . 7 𝐺 = (𝑖 ∈ ℕ0 ↦ (𝐵𝑖))
54a1i 11 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → 𝐺 = (𝑖 ∈ ℕ0 ↦ (𝐵𝑖)))
6 oveq2 6813 . . . . . . 7 (𝑖 = 𝑘 → (𝐵𝑖) = (𝐵𝑘))
76adantl 473 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ 𝑖 = 𝑘) → (𝐵𝑖) = (𝐵𝑘))
8 nnnn0 11483 . . . . . . 7 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
98adantl 473 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
10 stoweidlem7.5 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ+)
1110rpcnd 12059 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
1211adantr 472 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → 𝐵 ∈ ℂ)
1312, 9expcld 13194 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (𝐵𝑘) ∈ ℂ)
145, 7, 9, 13fvmptd 6442 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) = (𝐵𝑘))
15 1red 10239 . . . . . . . . . 10 (𝜑 → 1 ∈ ℝ)
1615renegcld 10641 . . . . . . . . 9 (𝜑 → -1 ∈ ℝ)
17 0red 10225 . . . . . . . . 9 (𝜑 → 0 ∈ ℝ)
1810rpred 12057 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
19 neg1lt0 11311 . . . . . . . . . 10 -1 < 0
2019a1i 11 . . . . . . . . 9 (𝜑 → -1 < 0)
2110rpgt0d 12060 . . . . . . . . 9 (𝜑 → 0 < 𝐵)
2216, 17, 18, 20, 21lttrd 10382 . . . . . . . 8 (𝜑 → -1 < 𝐵)
23 stoweidlem7.6 . . . . . . . 8 (𝜑𝐵 < 1)
2418, 15absltd 14359 . . . . . . . 8 (𝜑 → ((abs‘𝐵) < 1 ↔ (-1 < 𝐵𝐵 < 1)))
2522, 23, 24mpbir2and 995 . . . . . . 7 (𝜑 → (abs‘𝐵) < 1)
2611, 25expcnv 14787 . . . . . 6 (𝜑 → (𝑖 ∈ ℕ0 ↦ (𝐵𝑖)) ⇝ 0)
274, 26syl5eqbr 4831 . . . . 5 (𝜑𝐺 ⇝ 0)
281, 2, 3, 14, 27climi 14432 . . . 4 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸))
29 r19.26 3194 . . . . . . . . . . . . . 14 (∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸) ↔ (∀𝑘 ∈ (ℤ𝑛)(𝐵𝑘) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐵𝑘) − 0)) < 𝐸))
3029simprbi 483 . . . . . . . . . . . . 13 (∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸) → ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐵𝑘) − 0)) < 𝐸)
3130ad2antlr 765 . . . . . . . . . . . 12 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐵𝑘) − 0)) < 𝐸)
32 oveq2 6813 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑖 → (𝐵𝑘) = (𝐵𝑖))
3332oveq1d 6820 . . . . . . . . . . . . . . 15 (𝑘 = 𝑖 → ((𝐵𝑘) − 0) = ((𝐵𝑖) − 0))
3433fveq2d 6348 . . . . . . . . . . . . . 14 (𝑘 = 𝑖 → (abs‘((𝐵𝑘) − 0)) = (abs‘((𝐵𝑖) − 0)))
3534breq1d 4806 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → ((abs‘((𝐵𝑘) − 0)) < 𝐸 ↔ (abs‘((𝐵𝑖) − 0)) < 𝐸))
3635rspccva 3440 . . . . . . . . . . . 12 ((∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐵𝑘) − 0)) < 𝐸𝑖 ∈ (ℤ𝑛)) → (abs‘((𝐵𝑖) − 0)) < 𝐸)
3731, 36sylancom 704 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → (abs‘((𝐵𝑖) − 0)) < 𝐸)
38 simplll 815 . . . . . . . . . . . . . . 15 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → 𝜑)
3938, 10syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → 𝐵 ∈ ℝ+)
4039rpred 12057 . . . . . . . . . . . . 13 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → 𝐵 ∈ ℝ)
41 simpllr 817 . . . . . . . . . . . . . . 15 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → 𝑛 ∈ ℕ)
42 nnnn0 11483 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
4341, 42syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → 𝑛 ∈ ℕ0)
44 eluznn0 11942 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0𝑖 ∈ (ℤ𝑛)) → 𝑖 ∈ ℕ0)
4543, 44sylancom 704 . . . . . . . . . . . . 13 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → 𝑖 ∈ ℕ0)
4640, 45reexpcld 13211 . . . . . . . . . . . 12 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → (𝐵𝑖) ∈ ℝ)
47 rpre 12024 . . . . . . . . . . . . 13 (𝐸 ∈ ℝ+𝐸 ∈ ℝ)
4838, 3, 473syl 18 . . . . . . . . . . . 12 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → 𝐸 ∈ ℝ)
49 recn 10210 . . . . . . . . . . . . . . . . 17 ((𝐵𝑖) ∈ ℝ → (𝐵𝑖) ∈ ℂ)
5049subid1d 10565 . . . . . . . . . . . . . . . 16 ((𝐵𝑖) ∈ ℝ → ((𝐵𝑖) − 0) = (𝐵𝑖))
5150adantr 472 . . . . . . . . . . . . . . 15 (((𝐵𝑖) ∈ ℝ ∧ 𝐸 ∈ ℝ) → ((𝐵𝑖) − 0) = (𝐵𝑖))
5251fveq2d 6348 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℝ ∧ 𝐸 ∈ ℝ) → (abs‘((𝐵𝑖) − 0)) = (abs‘(𝐵𝑖)))
5352breq1d 4806 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ 𝐸 ∈ ℝ) → ((abs‘((𝐵𝑖) − 0)) < 𝐸 ↔ (abs‘(𝐵𝑖)) < 𝐸))
54 abslt 14245 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ 𝐸 ∈ ℝ) → ((abs‘(𝐵𝑖)) < 𝐸 ↔ (-𝐸 < (𝐵𝑖) ∧ (𝐵𝑖) < 𝐸)))
5553, 54bitrd 268 . . . . . . . . . . . 12 (((𝐵𝑖) ∈ ℝ ∧ 𝐸 ∈ ℝ) → ((abs‘((𝐵𝑖) − 0)) < 𝐸 ↔ (-𝐸 < (𝐵𝑖) ∧ (𝐵𝑖) < 𝐸)))
5646, 48, 55syl2anc 696 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → ((abs‘((𝐵𝑖) − 0)) < 𝐸 ↔ (-𝐸 < (𝐵𝑖) ∧ (𝐵𝑖) < 𝐸)))
5737, 56mpbid 222 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → (-𝐸 < (𝐵𝑖) ∧ (𝐵𝑖) < 𝐸))
5857simprd 482 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → (𝐵𝑖) < 𝐸)
59 eluznn 11943 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (ℤ𝑛)) → 𝑖 ∈ ℕ)
6041, 59sylancom 704 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → 𝑖 ∈ ℕ)
6118adantr 472 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ℕ) → 𝐵 ∈ ℝ)
62 nnnn0 11483 . . . . . . . . . . . . 13 (𝑖 ∈ ℕ → 𝑖 ∈ ℕ0)
6362adantl 473 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ℕ) → 𝑖 ∈ ℕ0)
6461, 63reexpcld 13211 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℕ) → (𝐵𝑖) ∈ ℝ)
653rpred 12057 . . . . . . . . . . . 12 (𝜑𝐸 ∈ ℝ)
6665adantr 472 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℕ) → 𝐸 ∈ ℝ)
67 1red 10239 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℕ) → 1 ∈ ℝ)
6864, 66, 67ltsub2d 10821 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ) → ((𝐵𝑖) < 𝐸 ↔ (1 − 𝐸) < (1 − (𝐵𝑖))))
6938, 60, 68syl2anc 696 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → ((𝐵𝑖) < 𝐸 ↔ (1 − 𝐸) < (1 − (𝐵𝑖))))
7058, 69mpbid 222 . . . . . . . 8 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → (1 − 𝐸) < (1 − (𝐵𝑖)))
7170ralrimiva 3096 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) → ∀𝑖 ∈ (ℤ𝑛)(1 − 𝐸) < (1 − (𝐵𝑖)))
7232oveq2d 6821 . . . . . . . . 9 (𝑘 = 𝑖 → (1 − (𝐵𝑘)) = (1 − (𝐵𝑖)))
7372breq2d 4808 . . . . . . . 8 (𝑘 = 𝑖 → ((1 − 𝐸) < (1 − (𝐵𝑘)) ↔ (1 − 𝐸) < (1 − (𝐵𝑖))))
7473cbvralv 3302 . . . . . . 7 (∀𝑘 ∈ (ℤ𝑛)(1 − 𝐸) < (1 − (𝐵𝑘)) ↔ ∀𝑖 ∈ (ℤ𝑛)(1 − 𝐸) < (1 − (𝐵𝑖)))
7571, 74sylibr 224 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) → ∀𝑘 ∈ (ℤ𝑛)(1 − 𝐸) < (1 − (𝐵𝑘)))
7675ex 449 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸) → ∀𝑘 ∈ (ℤ𝑛)(1 − 𝐸) < (1 − (𝐵𝑘))))
7776reximdva 3147 . . . 4 (𝜑 → (∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸) → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(1 − 𝐸) < (1 − (𝐵𝑘))))
7828, 77mpd 15 . . 3 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(1 − 𝐸) < (1 − (𝐵𝑘)))
79 stoweidlem7.1 . . . . . . 7 𝐹 = (𝑖 ∈ ℕ0 ↦ ((1 / 𝐴)↑𝑖))
8079a1i 11 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → 𝐹 = (𝑖 ∈ ℕ0 ↦ ((1 / 𝐴)↑𝑖)))
81 oveq2 6813 . . . . . . 7 (𝑖 = 𝑘 → ((1 / 𝐴)↑𝑖) = ((1 / 𝐴)↑𝑘))
8281adantl 473 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ 𝑖 = 𝑘) → ((1 / 𝐴)↑𝑖) = ((1 / 𝐴)↑𝑘))
83 stoweidlem7.3 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
8483recnd 10252 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
85 0lt1 10734 . . . . . . . . . . . 12 0 < 1
8685a1i 11 . . . . . . . . . . 11 (𝜑 → 0 < 1)
87 stoweidlem7.4 . . . . . . . . . . 11 (𝜑 → 1 < 𝐴)
8817, 15, 83, 86, 87lttrd 10382 . . . . . . . . . 10 (𝜑 → 0 < 𝐴)
8988gt0ne0d 10776 . . . . . . . . 9 (𝜑𝐴 ≠ 0)
9084, 89reccld 10978 . . . . . . . 8 (𝜑 → (1 / 𝐴) ∈ ℂ)
9190adantr 472 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (1 / 𝐴) ∈ ℂ)
9291, 9expcld 13194 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((1 / 𝐴)↑𝑘) ∈ ℂ)
9380, 82, 9, 92fvmptd 6442 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = ((1 / 𝐴)↑𝑘))
9483, 89rereccld 11036 . . . . . . . . 9 (𝜑 → (1 / 𝐴) ∈ ℝ)
9583, 88recgt0d 11142 . . . . . . . . 9 (𝜑 → 0 < (1 / 𝐴))
9616, 17, 94, 20, 95lttrd 10382 . . . . . . . 8 (𝜑 → -1 < (1 / 𝐴))
97 ltdiv23 11098 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 ∈ ℝ ∧ 0 < 1)) → ((1 / 𝐴) < 1 ↔ (1 / 1) < 𝐴))
9815, 83, 88, 15, 86, 97syl122anc 1482 . . . . . . . . . 10 (𝜑 → ((1 / 𝐴) < 1 ↔ (1 / 1) < 𝐴))
99 1cnd 10240 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℂ)
10099div1d 10977 . . . . . . . . . . 11 (𝜑 → (1 / 1) = 1)
101100breq1d 4806 . . . . . . . . . 10 (𝜑 → ((1 / 1) < 𝐴 ↔ 1 < 𝐴))
10298, 101bitrd 268 . . . . . . . . 9 (𝜑 → ((1 / 𝐴) < 1 ↔ 1 < 𝐴))
10387, 102mpbird 247 . . . . . . . 8 (𝜑 → (1 / 𝐴) < 1)
10494, 15absltd 14359 . . . . . . . 8 (𝜑 → ((abs‘(1 / 𝐴)) < 1 ↔ (-1 < (1 / 𝐴) ∧ (1 / 𝐴) < 1)))
10596, 103, 104mpbir2and 995 . . . . . . 7 (𝜑 → (abs‘(1 / 𝐴)) < 1)
10690, 105expcnv 14787 . . . . . 6 (𝜑 → (𝑖 ∈ ℕ0 ↦ ((1 / 𝐴)↑𝑖)) ⇝ 0)
10779, 106syl5eqbr 4831 . . . . 5 (𝜑𝐹 ⇝ 0)
1081, 2, 3, 93, 107climi2 14433 . . . 4 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘(((1 / 𝐴)↑𝑘) − 0)) < 𝐸)
109 simpll 807 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝜑)
110 uznnssnn 11920 . . . . . . . . 9 (𝑛 ∈ ℕ → (ℤ𝑛) ⊆ ℕ)
111110ad2antlr 765 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (ℤ𝑛) ⊆ ℕ)
112 simpr 479 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ (ℤ𝑛))
113111, 112sseldd 3737 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
11492subid1d 10565 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (((1 / 𝐴)↑𝑘) − 0) = ((1 / 𝐴)↑𝑘))
115114fveq2d 6348 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (abs‘(((1 / 𝐴)↑𝑘) − 0)) = (abs‘((1 / 𝐴)↑𝑘)))
11694adantr 472 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (1 / 𝐴) ∈ ℝ)
117116, 9reexpcld 13211 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((1 / 𝐴)↑𝑘) ∈ ℝ)
11817, 94, 95ltled 10369 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ (1 / 𝐴))
119118adantr 472 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → 0 ≤ (1 / 𝐴))
120116, 9, 119expge0d 13212 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → 0 ≤ ((1 / 𝐴)↑𝑘))
121117, 120absidd 14352 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (abs‘((1 / 𝐴)↑𝑘)) = ((1 / 𝐴)↑𝑘))
122115, 121eqtrd 2786 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (abs‘(((1 / 𝐴)↑𝑘) − 0)) = ((1 / 𝐴)↑𝑘))
123122breq1d 4806 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((abs‘(((1 / 𝐴)↑𝑘) − 0)) < 𝐸 ↔ ((1 / 𝐴)↑𝑘) < 𝐸))
124123biimpd 219 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((abs‘(((1 / 𝐴)↑𝑘) − 0)) < 𝐸 → ((1 / 𝐴)↑𝑘) < 𝐸))
125109, 113, 124syl2anc 696 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((abs‘(((1 / 𝐴)↑𝑘) − 0)) < 𝐸 → ((1 / 𝐴)↑𝑘) < 𝐸))
126125ralimdva 3092 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑛)(abs‘(((1 / 𝐴)↑𝑘) − 0)) < 𝐸 → ∀𝑘 ∈ (ℤ𝑛)((1 / 𝐴)↑𝑘) < 𝐸))
127126reximdva 3147 . . . 4 (𝜑 → (∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘(((1 / 𝐴)↑𝑘) − 0)) < 𝐸 → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((1 / 𝐴)↑𝑘) < 𝐸))
128108, 127mpd 15 . . 3 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((1 / 𝐴)↑𝑘) < 𝐸)
1291rexanuz2 14280 . . 3 (∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸) ↔ (∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((1 / 𝐴)↑𝑘) < 𝐸))
13078, 128, 129sylanbrc 701 . 2 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸))
131 simpr 479 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸)) → ∀𝑘 ∈ (ℤ𝑛)((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸))
132 nnz 11583 . . . . . . . 8 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
133 uzid 11886 . . . . . . . 8 (𝑛 ∈ ℤ → 𝑛 ∈ (ℤ𝑛))
134132, 133syl 17 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ (ℤ𝑛))
135134ad2antlr 765 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸)) → 𝑛 ∈ (ℤ𝑛))
136 oveq2 6813 . . . . . . . . . 10 (𝑘 = 𝑛 → (𝐵𝑘) = (𝐵𝑛))
137136oveq2d 6821 . . . . . . . . 9 (𝑘 = 𝑛 → (1 − (𝐵𝑘)) = (1 − (𝐵𝑛)))
138137breq2d 4808 . . . . . . . 8 (𝑘 = 𝑛 → ((1 − 𝐸) < (1 − (𝐵𝑘)) ↔ (1 − 𝐸) < (1 − (𝐵𝑛))))
139 oveq2 6813 . . . . . . . . 9 (𝑘 = 𝑛 → ((1 / 𝐴)↑𝑘) = ((1 / 𝐴)↑𝑛))
140139breq1d 4806 . . . . . . . 8 (𝑘 = 𝑛 → (((1 / 𝐴)↑𝑘) < 𝐸 ↔ ((1 / 𝐴)↑𝑛) < 𝐸))
141138, 140anbi12d 749 . . . . . . 7 (𝑘 = 𝑛 → (((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸) ↔ ((1 − 𝐸) < (1 − (𝐵𝑛)) ∧ ((1 / 𝐴)↑𝑛) < 𝐸)))
142141rspccva 3440 . . . . . 6 ((∀𝑘 ∈ (ℤ𝑛)((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸) ∧ 𝑛 ∈ (ℤ𝑛)) → ((1 − 𝐸) < (1 − (𝐵𝑛)) ∧ ((1 / 𝐴)↑𝑛) < 𝐸))
143131, 135, 142syl2anc 696 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸)) → ((1 − 𝐸) < (1 − (𝐵𝑛)) ∧ ((1 / 𝐴)↑𝑛) < 𝐸))
144 1cnd 10240 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 1 ∈ ℂ)
14584, 89jca 555 . . . . . . . . . . 11 (𝜑 → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
146145adantr 472 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
14742adantl 473 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
148 expdiv 13097 . . . . . . . . . 10 ((1 ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ0) → ((1 / 𝐴)↑𝑛) = ((1↑𝑛) / (𝐴𝑛)))
149144, 146, 147, 148syl3anc 1473 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((1 / 𝐴)↑𝑛) = ((1↑𝑛) / (𝐴𝑛)))
150132adantl 473 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
151 1exp 13075 . . . . . . . . . . 11 (𝑛 ∈ ℤ → (1↑𝑛) = 1)
152150, 151syl 17 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (1↑𝑛) = 1)
153152oveq1d 6820 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((1↑𝑛) / (𝐴𝑛)) = (1 / (𝐴𝑛)))
154149, 153eqtrd 2786 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((1 / 𝐴)↑𝑛) = (1 / (𝐴𝑛)))
155154breq1d 4806 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (((1 / 𝐴)↑𝑛) < 𝐸 ↔ (1 / (𝐴𝑛)) < 𝐸))
156155adantr 472 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸)) → (((1 / 𝐴)↑𝑛) < 𝐸 ↔ (1 / (𝐴𝑛)) < 𝐸))
157156anbi2d 742 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸)) → (((1 − 𝐸) < (1 − (𝐵𝑛)) ∧ ((1 / 𝐴)↑𝑛) < 𝐸) ↔ ((1 − 𝐸) < (1 − (𝐵𝑛)) ∧ (1 / (𝐴𝑛)) < 𝐸)))
158143, 157mpbid 222 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸)) → ((1 − 𝐸) < (1 − (𝐵𝑛)) ∧ (1 / (𝐴𝑛)) < 𝐸))
159158ex 449 . . 3 ((𝜑𝑛 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑛)((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸) → ((1 − 𝐸) < (1 − (𝐵𝑛)) ∧ (1 / (𝐴𝑛)) < 𝐸)))
160159reximdva 3147 . 2 (𝜑 → (∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸) → ∃𝑛 ∈ ℕ ((1 − 𝐸) < (1 − (𝐵𝑛)) ∧ (1 / (𝐴𝑛)) < 𝐸)))
161130, 160mpd 15 1 (𝜑 → ∃𝑛 ∈ ℕ ((1 − 𝐸) < (1 − (𝐵𝑛)) ∧ (1 / (𝐴𝑛)) < 𝐸))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1624   ∈ wcel 2131   ≠ wne 2924  ∀wral 3042  ∃wrex 3043   ⊆ wss 3707   class class class wbr 4796   ↦ cmpt 4873  ‘cfv 6041  (class class class)co 6805  ℂcc 10118  ℝcr 10119  0cc0 10120  1c1 10121   < clt 10258   ≤ cle 10259   − cmin 10450  -cneg 10451   / cdiv 10868  ℕcn 11204  ℕ0cn0 11476  ℤcz 11561  ℤ≥cuz 11871  ℝ+crp 12017  ↑cexp 13046  abscabs 14165   ⇝ cli 14406 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197  ax-pre-sup 10198 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-2nd 7326  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-er 7903  df-pm 8018  df-en 8114  df-dom 8115  df-sdom 8116  df-sup 8505  df-inf 8506  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-div 10869  df-nn 11205  df-2 11263  df-3 11264  df-n0 11477  df-z 11562  df-uz 11872  df-rp 12018  df-fl 12779  df-seq 12988  df-exp 13047  df-cj 14030  df-re 14031  df-im 14032  df-sqrt 14166  df-abs 14167  df-clim 14410  df-rlim 14411 This theorem is referenced by:  stoweidlem49  40761
 Copyright terms: Public domain W3C validator