Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem62 Structured version   Visualization version   GIF version

Theorem stoweidlem62 40597
Description: This theorem proves the Stone Weierstrass theorem for the non-trivial case in which T is nonempty. The proof follows [BrosowskiDeutsh] p. 89 (through page 92). (Contributed by Glauco Siliprandi, 20-Apr-2017.) (Revised by AV, 13-Sep-2020.)
Hypotheses
Ref Expression
stoweidlem62.1 𝑡𝐹
stoweidlem62.2 𝑓𝜑
stoweidlem62.3 𝑡𝜑
stoweidlem62.4 𝐻 = (𝑡𝑇 ↦ ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )))
stoweidlem62.5 𝐾 = (topGen‘ran (,))
stoweidlem62.6 𝑇 = 𝐽
stoweidlem62.7 (𝜑𝐽 ∈ Comp)
stoweidlem62.8 𝐶 = (𝐽 Cn 𝐾)
stoweidlem62.9 (𝜑𝐴𝐶)
stoweidlem62.10 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem62.11 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem62.12 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweidlem62.13 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
stoweidlem62.14 (𝜑𝐹𝐶)
stoweidlem62.15 (𝜑𝐸 ∈ ℝ+)
stoweidlem62.16 (𝜑𝑇 ≠ ∅)
stoweidlem62.17 (𝜑𝐸 < (1 / 3))
Assertion
Ref Expression
stoweidlem62 (𝜑 → ∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸)
Distinct variable groups:   𝑓,𝑔,𝑡,𝐴   𝑓,𝑞,𝑟,𝑥,𝑡,𝐴   𝑓,𝐸,𝑔,𝑡   𝑓,𝐹,𝑔   𝑓,𝐻,𝑔   𝑓,𝐽,𝑟,𝑡   𝑇,𝑓,𝑔,𝑡   𝜑,𝑓,𝑔   𝐸,𝑞,𝑟,𝑥   𝐻,𝑞,𝑟,𝑥   𝑇,𝑞,𝑟,𝑥   𝜑,𝑞,𝑟,𝑥   𝑡,𝐾   𝑥,𝐹
Allowed substitution hints:   𝜑(𝑡)   𝐶(𝑥,𝑡,𝑓,𝑔,𝑟,𝑞)   𝐹(𝑡,𝑟,𝑞)   𝐻(𝑡)   𝐽(𝑥,𝑔,𝑞)   𝐾(𝑥,𝑓,𝑔,𝑟,𝑞)

Proof of Theorem stoweidlem62
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 stoweidlem62.4 . . . . 5 𝐻 = (𝑡𝑇 ↦ ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )))
2 nfmpt1 4780 . . . . 5 𝑡(𝑡𝑇 ↦ ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )))
31, 2nfcxfr 2791 . . . 4 𝑡𝐻
4 stoweidlem62.3 . . . 4 𝑡𝜑
5 stoweidlem62.5 . . . 4 𝐾 = (topGen‘ran (,))
6 stoweidlem62.7 . . . 4 (𝜑𝐽 ∈ Comp)
7 stoweidlem62.6 . . . 4 𝑇 = 𝐽
8 stoweidlem62.16 . . . 4 (𝜑𝑇 ≠ ∅)
9 stoweidlem62.8 . . . 4 𝐶 = (𝐽 Cn 𝐾)
10 stoweidlem62.9 . . . 4 (𝜑𝐴𝐶)
11 eleq1 2718 . . . . . . 7 (𝑔 = → (𝑔𝐴𝐴))
12113anbi3d 1445 . . . . . 6 (𝑔 = → ((𝜑𝑓𝐴𝑔𝐴) ↔ (𝜑𝑓𝐴𝐴)))
13 fveq1 6228 . . . . . . . . 9 (𝑔 = → (𝑔𝑡) = (𝑡))
1413oveq2d 6706 . . . . . . . 8 (𝑔 = → ((𝑓𝑡) + (𝑔𝑡)) = ((𝑓𝑡) + (𝑡)))
1514mpteq2dv 4778 . . . . . . 7 (𝑔 = → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) = (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑡))))
1615eleq1d 2715 . . . . . 6 (𝑔 = → ((𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴 ↔ (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑡))) ∈ 𝐴))
1712, 16imbi12d 333 . . . . 5 (𝑔 = → (((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴) ↔ ((𝜑𝑓𝐴𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑡))) ∈ 𝐴)))
18 stoweidlem62.10 . . . . 5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
1917, 18chvarv 2299 . . . 4 ((𝜑𝑓𝐴𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑡))) ∈ 𝐴)
2013oveq2d 6706 . . . . . . . 8 (𝑔 = → ((𝑓𝑡) · (𝑔𝑡)) = ((𝑓𝑡) · (𝑡)))
2120mpteq2dv 4778 . . . . . . 7 (𝑔 = → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) = (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑡))))
2221eleq1d 2715 . . . . . 6 (𝑔 = → ((𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴 ↔ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑡))) ∈ 𝐴))
2312, 22imbi12d 333 . . . . 5 (𝑔 = → (((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴) ↔ ((𝜑𝑓𝐴𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑡))) ∈ 𝐴)))
24 stoweidlem62.11 . . . . 5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
2523, 24chvarv 2299 . . . 4 ((𝜑𝑓𝐴𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑡))) ∈ 𝐴)
26 stoweidlem62.12 . . . 4 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
27 stoweidlem62.13 . . . 4 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
28 stoweidlem62.1 . . . . . 6 𝑡𝐹
2928nfrn 5400 . . . . . . 7 𝑡ran 𝐹
30 nfcv 2793 . . . . . . 7 𝑡
31 nfcv 2793 . . . . . . 7 𝑡 <
3229, 30, 31nfinf 8429 . . . . . 6 𝑡inf(ran 𝐹, ℝ, < )
33 eqid 2651 . . . . . 6 (𝑇 × {-inf(ran 𝐹, ℝ, < )}) = (𝑇 × {-inf(ran 𝐹, ℝ, < )})
34 cmptop 21246 . . . . . . 7 (𝐽 ∈ Comp → 𝐽 ∈ Top)
356, 34syl 17 . . . . . 6 (𝜑𝐽 ∈ Top)
36 stoweidlem62.14 . . . . . 6 (𝜑𝐹𝐶)
3736, 9syl6eleq 2740 . . . . . . . 8 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
3828, 4, 7, 5, 6, 37, 8stoweidlem29 40564 . . . . . . 7 (𝜑 → (inf(ran 𝐹, ℝ, < ) ∈ ran 𝐹 ∧ inf(ran 𝐹, ℝ, < ) ∈ ℝ ∧ ∀𝑡𝑇 inf(ran 𝐹, ℝ, < ) ≤ (𝐹𝑡)))
3938simp2d 1094 . . . . . 6 (𝜑 → inf(ran 𝐹, ℝ, < ) ∈ ℝ)
4028, 32, 4, 7, 33, 5, 35, 9, 36, 39stoweidlem47 40582 . . . . 5 (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡) − inf(ran 𝐹, ℝ, < ))) ∈ 𝐶)
411, 40syl5eqel 2734 . . . 4 (𝜑𝐻𝐶)
4238simp3d 1095 . . . . . . . . 9 (𝜑 → ∀𝑡𝑇 inf(ran 𝐹, ℝ, < ) ≤ (𝐹𝑡))
4342r19.21bi 2961 . . . . . . . 8 ((𝜑𝑡𝑇) → inf(ran 𝐹, ℝ, < ) ≤ (𝐹𝑡))
445, 7, 9, 36fcnre 39498 . . . . . . . . . 10 (𝜑𝐹:𝑇⟶ℝ)
4544ffvelrnda 6399 . . . . . . . . 9 ((𝜑𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
4639adantr 480 . . . . . . . . 9 ((𝜑𝑡𝑇) → inf(ran 𝐹, ℝ, < ) ∈ ℝ)
4745, 46subge0d 10655 . . . . . . . 8 ((𝜑𝑡𝑇) → (0 ≤ ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )) ↔ inf(ran 𝐹, ℝ, < ) ≤ (𝐹𝑡)))
4843, 47mpbird 247 . . . . . . 7 ((𝜑𝑡𝑇) → 0 ≤ ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )))
49 simpr 476 . . . . . . . 8 ((𝜑𝑡𝑇) → 𝑡𝑇)
5045, 46resubcld 10496 . . . . . . . 8 ((𝜑𝑡𝑇) → ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )) ∈ ℝ)
511fvmpt2 6330 . . . . . . . 8 ((𝑡𝑇 ∧ ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )) ∈ ℝ) → (𝐻𝑡) = ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )))
5249, 50, 51syl2anc 694 . . . . . . 7 ((𝜑𝑡𝑇) → (𝐻𝑡) = ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )))
5348, 52breqtrrd 4713 . . . . . 6 ((𝜑𝑡𝑇) → 0 ≤ (𝐻𝑡))
5453ex 449 . . . . 5 (𝜑 → (𝑡𝑇 → 0 ≤ (𝐻𝑡)))
554, 54ralrimi 2986 . . . 4 (𝜑 → ∀𝑡𝑇 0 ≤ (𝐻𝑡))
56 stoweidlem62.15 . . . . 5 (𝜑𝐸 ∈ ℝ+)
5756rphalfcld 11922 . . . 4 (𝜑 → (𝐸 / 2) ∈ ℝ+)
5856rpred 11910 . . . . . 6 (𝜑𝐸 ∈ ℝ)
5958rehalfcld 11317 . . . . 5 (𝜑 → (𝐸 / 2) ∈ ℝ)
60 3re 11132 . . . . . . 7 3 ∈ ℝ
61 3ne0 11153 . . . . . . 7 3 ≠ 0
6260, 61rereccli 10828 . . . . . 6 (1 / 3) ∈ ℝ
6362a1i 11 . . . . 5 (𝜑 → (1 / 3) ∈ ℝ)
64 rphalflt 11898 . . . . . 6 (𝐸 ∈ ℝ+ → (𝐸 / 2) < 𝐸)
6556, 64syl 17 . . . . 5 (𝜑 → (𝐸 / 2) < 𝐸)
66 stoweidlem62.17 . . . . 5 (𝜑𝐸 < (1 / 3))
6759, 58, 63, 65, 66lttrd 10236 . . . 4 (𝜑 → (𝐸 / 2) < (1 / 3))
683, 4, 5, 6, 7, 8, 9, 10, 19, 25, 26, 27, 41, 55, 57, 67stoweidlem61 40596 . . 3 (𝜑 → ∃𝐴𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < (2 · (𝐸 / 2)))
69 nfra1 2970 . . . . . . 7 𝑡𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < (2 · (𝐸 / 2))
704, 69nfan 1868 . . . . . 6 𝑡(𝜑 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < (2 · (𝐸 / 2)))
71 rsp 2958 . . . . . . 7 (∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < (2 · (𝐸 / 2)) → (𝑡𝑇 → (abs‘((𝑡) − (𝐻𝑡))) < (2 · (𝐸 / 2))))
7256rpcnd 11912 . . . . . . . . . 10 (𝜑𝐸 ∈ ℂ)
73 2cnd 11131 . . . . . . . . . 10 (𝜑 → 2 ∈ ℂ)
74 2ne0 11151 . . . . . . . . . . 11 2 ≠ 0
7574a1i 11 . . . . . . . . . 10 (𝜑 → 2 ≠ 0)
7672, 73, 75divcan2d 10841 . . . . . . . . 9 (𝜑 → (2 · (𝐸 / 2)) = 𝐸)
7776breq2d 4697 . . . . . . . 8 (𝜑 → ((abs‘((𝑡) − (𝐻𝑡))) < (2 · (𝐸 / 2)) ↔ (abs‘((𝑡) − (𝐻𝑡))) < 𝐸))
7877biimpd 219 . . . . . . 7 (𝜑 → ((abs‘((𝑡) − (𝐻𝑡))) < (2 · (𝐸 / 2)) → (abs‘((𝑡) − (𝐻𝑡))) < 𝐸))
7971, 78sylan9r 691 . . . . . 6 ((𝜑 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < (2 · (𝐸 / 2))) → (𝑡𝑇 → (abs‘((𝑡) − (𝐻𝑡))) < 𝐸))
8070, 79ralrimi 2986 . . . . 5 ((𝜑 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < (2 · (𝐸 / 2))) → ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)
8180ex 449 . . . 4 (𝜑 → (∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < (2 · (𝐸 / 2)) → ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸))
8281reximdv 3045 . . 3 (𝜑 → (∃𝐴𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < (2 · (𝐸 / 2)) → ∃𝐴𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸))
8368, 82mpd 15 . 2 (𝜑 → ∃𝐴𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)
84 nfmpt1 4780 . . 3 𝑡(𝑡𝑇 ↦ ((𝑡) + inf(ran 𝐹, ℝ, < )))
85 nfcv 2793 . . 3 𝑡
86 nfv 1883 . . . . 5 𝑡 𝐴
87 nfra1 2970 . . . . 5 𝑡𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸
8886, 87nfan 1868 . . . 4 𝑡(𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)
894, 88nfan 1868 . . 3 𝑡(𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸))
90 eqid 2651 . . 3 (𝑡𝑇 ↦ ((𝑡) + inf(ran 𝐹, ℝ, < ))) = (𝑡𝑇 ↦ ((𝑡) + inf(ran 𝐹, ℝ, < )))
9144adantr 480 . . 3 ((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) → 𝐹:𝑇⟶ℝ)
9239adantr 480 . . 3 ((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) → inf(ran 𝐹, ℝ, < ) ∈ ℝ)
93183adant1r 1359 . . 3 (((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
9426adantlr 751 . . 3 (((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) ∧ 𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
95 stoweidlem62.2 . . . . 5 𝑓𝜑
9610sseld 3635 . . . . . . . 8 (𝜑 → (𝑓𝐴𝑓𝐶))
979eleq2i 2722 . . . . . . . 8 (𝑓𝐶𝑓 ∈ (𝐽 Cn 𝐾))
9896, 97syl6ib 241 . . . . . . 7 (𝜑 → (𝑓𝐴𝑓 ∈ (𝐽 Cn 𝐾)))
99 eqid 2651 . . . . . . . 8 𝐽 = 𝐽
100 uniretop 22613 . . . . . . . . 9 ℝ = (topGen‘ran (,))
1015unieqi 4477 . . . . . . . . 9 𝐾 = (topGen‘ran (,))
102100, 101eqtr4i 2676 . . . . . . . 8 ℝ = 𝐾
10399, 102cnf 21098 . . . . . . 7 (𝑓 ∈ (𝐽 Cn 𝐾) → 𝑓: 𝐽⟶ℝ)
10498, 103syl6 35 . . . . . 6 (𝜑 → (𝑓𝐴𝑓: 𝐽⟶ℝ))
105 feq2 6065 . . . . . . 7 (𝑇 = 𝐽 → (𝑓:𝑇⟶ℝ ↔ 𝑓: 𝐽⟶ℝ))
1067, 105mp1i 13 . . . . . 6 (𝜑 → (𝑓:𝑇⟶ℝ ↔ 𝑓: 𝐽⟶ℝ))
107104, 106sylibrd 249 . . . . 5 (𝜑 → (𝑓𝐴𝑓:𝑇⟶ℝ))
10895, 107ralrimi 2986 . . . 4 (𝜑 → ∀𝑓𝐴 𝑓:𝑇⟶ℝ)
109108adantr 480 . . 3 ((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) → ∀𝑓𝐴 𝑓:𝑇⟶ℝ)
110 simprl 809 . . 3 ((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) → 𝐴)
11152eqcomd 2657 . . . . . . . . 9 ((𝜑𝑡𝑇) → ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )) = (𝐻𝑡))
112111oveq2d 6706 . . . . . . . 8 ((𝜑𝑡𝑇) → ((𝑡) − ((𝐹𝑡) − inf(ran 𝐹, ℝ, < ))) = ((𝑡) − (𝐻𝑡)))
113112fveq2d 6233 . . . . . . 7 ((𝜑𝑡𝑇) → (abs‘((𝑡) − ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )))) = (abs‘((𝑡) − (𝐻𝑡))))
114113adantlr 751 . . . . . 6 (((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) ∧ 𝑡𝑇) → (abs‘((𝑡) − ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )))) = (abs‘((𝑡) − (𝐻𝑡))))
115 simplrr 818 . . . . . . 7 (((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) ∧ 𝑡𝑇) → ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)
116 rspa 2959 . . . . . . 7 ((∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸𝑡𝑇) → (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)
117115, 116sylancom 702 . . . . . 6 (((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) ∧ 𝑡𝑇) → (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)
118114, 117eqbrtrd 4707 . . . . 5 (((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) ∧ 𝑡𝑇) → (abs‘((𝑡) − ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )))) < 𝐸)
119118ex 449 . . . 4 ((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) → (𝑡𝑇 → (abs‘((𝑡) − ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )))) < 𝐸))
12089, 119ralrimi 2986 . . 3 ((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) → ∀𝑡𝑇 (abs‘((𝑡) − ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )))) < 𝐸)
12184, 85, 32, 89, 90, 91, 92, 93, 94, 109, 110, 120stoweidlem21 40556 . 2 ((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) → ∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸)
12283, 121rexlimddv 3064 1 (𝜑 → ∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wnf 1748  wcel 2030  wnfc 2780  wne 2823  wral 2941  wrex 2942  wss 3607  c0 3948  {csn 4210   cuni 4468   class class class wbr 4685  cmpt 4762   × cxp 5141  ran crn 5144  wf 5922  cfv 5926  (class class class)co 6690  infcinf 8388  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979   < clt 10112  cle 10113  cmin 10304  -cneg 10305   / cdiv 10722  2c2 11108  3c3 11109  +crp 11870  (,)cioo 12213  abscabs 14018  topGenctg 16145  Topctop 20746   Cn ccn 21076  Compccmp 21237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ioc 12218  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-rlim 14264  df-sum 14461  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-cn 21079  df-cnp 21080  df-cmp 21238  df-tx 21413  df-hmeo 21606  df-xms 22172  df-ms 22173  df-tms 22174
This theorem is referenced by:  stoweid  40598
  Copyright terms: Public domain W3C validator