Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem61 Structured version   Visualization version   GIF version

Theorem stoweidlem61 40795
Description: This lemma proves that there exists a function 𝑔 as in the proof in [BrosowskiDeutsh] p. 92: 𝑔 is in the subalgebra, and for all 𝑡 in 𝑇, abs( f(t) - g(t) ) < 2*ε. Here 𝐹 is used to represent f in the paper, and 𝐸 is used to represent ε. For this lemma there's the further assumption that the function 𝐹 to be approximated is nonnegative (this assumption is removed in a later theorem). (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem61.1 𝑡𝐹
stoweidlem61.2 𝑡𝜑
stoweidlem61.3 𝐾 = (topGen‘ran (,))
stoweidlem61.4 (𝜑𝐽 ∈ Comp)
stoweidlem61.5 𝑇 = 𝐽
stoweidlem61.6 (𝜑𝑇 ≠ ∅)
stoweidlem61.7 𝐶 = (𝐽 Cn 𝐾)
stoweidlem61.8 (𝜑𝐴𝐶)
stoweidlem61.9 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem61.10 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem61.11 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweidlem61.12 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
stoweidlem61.13 (𝜑𝐹𝐶)
stoweidlem61.14 (𝜑 → ∀𝑡𝑇 0 ≤ (𝐹𝑡))
stoweidlem61.15 (𝜑𝐸 ∈ ℝ+)
stoweidlem61.16 (𝜑𝐸 < (1 / 3))
Assertion
Ref Expression
stoweidlem61 (𝜑 → ∃𝑔𝐴𝑡𝑇 (abs‘((𝑔𝑡) − (𝐹𝑡))) < (2 · 𝐸))
Distinct variable groups:   𝑓,𝑔,𝑞,𝑟,𝑡,𝑥,𝐴   𝑓,𝐸,𝑔,𝑞,𝑟,𝑡,𝑥   𝑓,𝐹,𝑔,𝑞,𝑟,𝑥   𝑓,𝐽,𝑔,𝑟,𝑡   𝑇,𝑓,𝑔,𝑞,𝑟,𝑡,𝑥   𝜑,𝑓,𝑔,𝑞,𝑟,𝑥   𝑡,𝐾
Allowed substitution hints:   𝜑(𝑡)   𝐶(𝑥,𝑡,𝑓,𝑔,𝑟,𝑞)   𝐹(𝑡)   𝐽(𝑥,𝑞)   𝐾(𝑥,𝑓,𝑔,𝑟,𝑞)

Proof of Theorem stoweidlem61
Dummy variables 𝑗 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem61.1 . . 3 𝑡𝐹
2 stoweidlem61.2 . . 3 𝑡𝜑
3 stoweidlem61.3 . . 3 𝐾 = (topGen‘ran (,))
4 stoweidlem61.5 . . 3 𝑇 = 𝐽
5 stoweidlem61.7 . . 3 𝐶 = (𝐽 Cn 𝐾)
6 eqid 2771 . . 3 (𝑗 ∈ (0...𝑛) ↦ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)}) = (𝑗 ∈ (0...𝑛) ↦ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)})
7 eqid 2771 . . 3 (𝑗 ∈ (0...𝑛) ↦ {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)}) = (𝑗 ∈ (0...𝑛) ↦ {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)})
8 stoweidlem61.4 . . 3 (𝜑𝐽 ∈ Comp)
9 stoweidlem61.6 . . 3 (𝜑𝑇 ≠ ∅)
10 stoweidlem61.8 . . 3 (𝜑𝐴𝐶)
11 stoweidlem61.9 . . 3 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
12 stoweidlem61.10 . . 3 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
13 stoweidlem61.11 . . 3 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
14 stoweidlem61.12 . . 3 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
15 stoweidlem61.13 . . 3 (𝜑𝐹𝐶)
16 stoweidlem61.14 . . 3 (𝜑 → ∀𝑡𝑇 0 ≤ (𝐹𝑡))
17 stoweidlem61.15 . . 3 (𝜑𝐸 ∈ ℝ+)
18 stoweidlem61.16 . . 3 (𝜑𝐸 < (1 / 3))
191, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18stoweidlem60 40794 . 2 (𝜑 → ∃𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))))
20 nfv 1995 . . . . 5 𝑡 𝑔𝐴
212, 20nfan 1980 . . . 4 𝑡(𝜑𝑔𝐴)
2217ad2antrr 705 . . . . 5 (((𝜑𝑔𝐴) ∧ 𝑡𝑇) → 𝐸 ∈ ℝ+)
233, 4, 5, 15fcnre 39706 . . . . . . 7 (𝜑𝐹:𝑇⟶ℝ)
2423ffvelrnda 6502 . . . . . 6 ((𝜑𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
2524adantlr 694 . . . . 5 (((𝜑𝑔𝐴) ∧ 𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
2610sselda 3752 . . . . . . 7 ((𝜑𝑔𝐴) → 𝑔𝐶)
273, 4, 5, 26fcnre 39706 . . . . . 6 ((𝜑𝑔𝐴) → 𝑔:𝑇⟶ℝ)
2827ffvelrnda 6502 . . . . 5 (((𝜑𝑔𝐴) ∧ 𝑡𝑇) → (𝑔𝑡) ∈ ℝ)
29 simpll1 1254 . . . . . . . 8 ((((𝐸 ∈ ℝ+ ∧ (𝐹𝑡) ∈ ℝ ∧ (𝑔𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))) → 𝐸 ∈ ℝ+)
30 simpll2 1256 . . . . . . . 8 ((((𝐸 ∈ ℝ+ ∧ (𝐹𝑡) ∈ ℝ ∧ (𝑔𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))) → (𝐹𝑡) ∈ ℝ)
31 simpll3 1258 . . . . . . . 8 ((((𝐸 ∈ ℝ+ ∧ (𝐹𝑡) ∈ ℝ ∧ (𝑔𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))) → (𝑔𝑡) ∈ ℝ)
32 simplr 752 . . . . . . . 8 ((((𝐸 ∈ ℝ+ ∧ (𝐹𝑡) ∈ ℝ ∧ (𝑔𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))) → 𝑗 ∈ ℝ)
33 simprll 764 . . . . . . . 8 ((((𝐸 ∈ ℝ+ ∧ (𝐹𝑡) ∈ ℝ ∧ (𝑔𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))) → ((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡))
34 simprlr 765 . . . . . . . 8 ((((𝐸 ∈ ℝ+ ∧ (𝐹𝑡) ∈ ℝ ∧ (𝑔𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))) → (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸))
35 simprrr 767 . . . . . . . 8 ((((𝐸 ∈ ℝ+ ∧ (𝐹𝑡) ∈ ℝ ∧ (𝑔𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))) → ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))
36 simprrl 766 . . . . . . . 8 ((((𝐸 ∈ ℝ+ ∧ (𝐹𝑡) ∈ ℝ ∧ (𝑔𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))) → (𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸))
3729, 30, 31, 32, 33, 34, 35, 36stoweidlem13 40747 . . . . . . 7 ((((𝐸 ∈ ℝ+ ∧ (𝐹𝑡) ∈ ℝ ∧ (𝑔𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))) → (abs‘((𝑔𝑡) − (𝐹𝑡))) < (2 · 𝐸))
3837ex 397 . . . . . 6 (((𝐸 ∈ ℝ+ ∧ (𝐹𝑡) ∈ ℝ ∧ (𝑔𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) → (((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))) → (abs‘((𝑔𝑡) − (𝐹𝑡))) < (2 · 𝐸)))
3938rexlimdva 3179 . . . . 5 ((𝐸 ∈ ℝ+ ∧ (𝐹𝑡) ∈ ℝ ∧ (𝑔𝑡) ∈ ℝ) → (∃𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))) → (abs‘((𝑔𝑡) − (𝐹𝑡))) < (2 · 𝐸)))
4022, 25, 28, 39syl3anc 1476 . . . 4 (((𝜑𝑔𝐴) ∧ 𝑡𝑇) → (∃𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))) → (abs‘((𝑔𝑡) − (𝐹𝑡))) < (2 · 𝐸)))
4121, 40ralimdaa 3107 . . 3 ((𝜑𝑔𝐴) → (∀𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))) → ∀𝑡𝑇 (abs‘((𝑔𝑡) − (𝐹𝑡))) < (2 · 𝐸)))
4241reximdva 3165 . 2 (𝜑 → (∃𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))) → ∃𝑔𝐴𝑡𝑇 (abs‘((𝑔𝑡) − (𝐹𝑡))) < (2 · 𝐸)))
4319, 42mpd 15 1 (𝜑 → ∃𝑔𝐴𝑡𝑇 (abs‘((𝑔𝑡) − (𝐹𝑡))) < (2 · 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wnf 1856  wcel 2145  wnfc 2900  wne 2943  wral 3061  wrex 3062  {crab 3065  wss 3723  c0 4063   cuni 4574   class class class wbr 4786  cmpt 4863  ran crn 5250  cfv 6031  (class class class)co 6793  cr 10137  0cc0 10138  1c1 10139   + caddc 10141   · cmul 10143   < clt 10276  cle 10277  cmin 10468   / cdiv 10886  2c2 11272  3c3 11273  4c4 11274  +crp 12035  (,)cioo 12380  ...cfz 12533  abscabs 14182  topGenctg 16306   Cn ccn 21249  Compccmp 21410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216  ax-mulf 10218
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-of 7044  df-om 7213  df-1st 7315  df-2nd 7316  df-supp 7447  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-er 7896  df-map 8011  df-pm 8012  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8432  df-fi 8473  df-sup 8504  df-inf 8505  df-oi 8571  df-card 8965  df-cda 9192  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-dec 11696  df-uz 11889  df-q 11992  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12384  df-ioc 12385  df-ico 12386  df-icc 12387  df-fz 12534  df-fzo 12674  df-fl 12801  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-clim 14427  df-rlim 14428  df-sum 14625  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-hom 16174  df-cco 16175  df-rest 16291  df-topn 16292  df-0g 16310  df-gsum 16311  df-topgen 16312  df-pt 16313  df-prds 16316  df-xrs 16370  df-qtop 16375  df-imas 16376  df-xps 16378  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-mulg 17749  df-cntz 17957  df-cmn 18402  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-cnfld 19962  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-cld 21044  df-cn 21252  df-cnp 21253  df-cmp 21411  df-tx 21586  df-hmeo 21779  df-xms 22345  df-ms 22346  df-tms 22347
This theorem is referenced by:  stoweidlem62  40796
  Copyright terms: Public domain W3C validator