Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem56 Structured version   Visualization version   GIF version

Theorem stoweidlem56 40787
Description: This theorem proves Lemma 1 in [BrosowskiDeutsh] p. 90. Here 𝑍 is used to represent t0 in the paper, 𝑣 is used to represent 𝑉 in the paper, and 𝑒 is used to represent ε. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem56.1 𝑡𝑈
stoweidlem56.2 𝑡𝜑
stoweidlem56.3 𝐾 = (topGen‘ran (,))
stoweidlem56.4 (𝜑𝐽 ∈ Comp)
stoweidlem56.5 𝑇 = 𝐽
stoweidlem56.6 𝐶 = (𝐽 Cn 𝐾)
stoweidlem56.7 (𝜑𝐴𝐶)
stoweidlem56.8 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem56.9 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem56.10 ((𝜑𝑦 ∈ ℝ) → (𝑡𝑇𝑦) ∈ 𝐴)
stoweidlem56.11 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
stoweidlem56.12 (𝜑𝑈𝐽)
stoweidlem56.13 (𝜑𝑍𝑈)
Assertion
Ref Expression
stoweidlem56 (𝜑 → ∃𝑣𝐽 ((𝑍𝑣𝑣𝑈) ∧ ∀𝑒 ∈ ℝ+𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑣 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡))))
Distinct variable groups:   𝑒,𝑓,𝑔,𝑡,𝐴   𝑣,𝑒,𝑥,𝑡,𝐴   𝑦,𝑒,𝑓,𝑡,𝐴   𝑔,𝐽,𝑡   𝑇,𝑒,𝑓,𝑔,𝑡   𝑈,𝑒,𝑓,𝑔   𝑒,𝑍,𝑓,𝑔,𝑡   𝜑,𝑒,𝑓,𝑔   𝑓,𝑞,𝑔,𝑡,𝐴,𝑟   𝑦,𝑞,𝑇   𝑈,𝑞,𝑦   𝑍,𝑞,𝑦   𝜑,𝑞,𝑦,𝑟   𝑇,𝑟   𝑈,𝑟   𝜑,𝑟   𝑡,𝐾   𝑣,𝐽   𝑣,𝑇,𝑥   𝑣,𝑈,𝑥   𝑣,𝑍
Allowed substitution hints:   𝜑(𝑥,𝑣,𝑡)   𝐶(𝑥,𝑦,𝑣,𝑡,𝑒,𝑓,𝑔,𝑟,𝑞)   𝑈(𝑡)   𝐽(𝑥,𝑦,𝑒,𝑓,𝑟,𝑞)   𝐾(𝑥,𝑦,𝑣,𝑒,𝑓,𝑔,𝑟,𝑞)   𝑍(𝑥,𝑟)

Proof of Theorem stoweidlem56
Dummy variables 𝑑 𝑝 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem56.1 . . . . 5 𝑡𝑈
2 stoweidlem56.2 . . . . 5 𝑡𝜑
3 stoweidlem56.3 . . . . 5 𝐾 = (topGen‘ran (,))
4 stoweidlem56.4 . . . . 5 (𝜑𝐽 ∈ Comp)
5 stoweidlem56.5 . . . . 5 𝑇 = 𝐽
6 stoweidlem56.6 . . . . 5 𝐶 = (𝐽 Cn 𝐾)
7 stoweidlem56.7 . . . . 5 (𝜑𝐴𝐶)
8 stoweidlem56.8 . . . . 5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
9 stoweidlem56.9 . . . . 5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
10 stoweidlem56.10 . . . . 5 ((𝜑𝑦 ∈ ℝ) → (𝑡𝑇𝑦) ∈ 𝐴)
11 stoweidlem56.11 . . . . 5 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
12 stoweidlem56.12 . . . . 5 (𝜑𝑈𝐽)
13 stoweidlem56.13 . . . . 5 (𝜑𝑍𝑈)
14 eqid 2771 . . . . 5 {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))} = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
15 eqid 2771 . . . . 5 {𝑤𝐽 ∣ ∃ ∈ {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}} = {𝑤𝐽 ∣ ∃ ∈ {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15stoweidlem55 40786 . . . 4 (𝜑 → ∃𝑝𝐴 (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))
17 df-rex 3067 . . . 4 (∃𝑝𝐴 (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)) ↔ ∃𝑝(𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡))))
1816, 17sylib 208 . . 3 (𝜑 → ∃𝑝(𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡))))
19 simpl 468 . . . . . . 7 ((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) → 𝜑)
20 simprl 754 . . . . . . 7 ((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) → 𝑝𝐴)
21 simprr3 1276 . . . . . . 7 ((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) → ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡))
22 nfv 1995 . . . . . . . . 9 𝑡 𝑝𝐴
23 nfra1 3090 . . . . . . . . 9 𝑡𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)
242, 22, 23nf3an 1983 . . . . . . . 8 𝑡(𝜑𝑝𝐴 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡))
2543ad2ant1 1127 . . . . . . . 8 ((𝜑𝑝𝐴 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)) → 𝐽 ∈ Comp)
267sselda 3752 . . . . . . . . . 10 ((𝜑𝑝𝐴) → 𝑝𝐶)
2726, 6syl6eleq 2860 . . . . . . . . 9 ((𝜑𝑝𝐴) → 𝑝 ∈ (𝐽 Cn 𝐾))
28273adant3 1126 . . . . . . . 8 ((𝜑𝑝𝐴 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)) → 𝑝 ∈ (𝐽 Cn 𝐾))
29 simp3 1132 . . . . . . . 8 ((𝜑𝑝𝐴 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)) → ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡))
30123ad2ant1 1127 . . . . . . . 8 ((𝜑𝑝𝐴 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)) → 𝑈𝐽)
311, 24, 3, 5, 25, 28, 29, 30stoweidlem28 40759 . . . . . . 7 ((𝜑𝑝𝐴 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)) → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)))
3219, 20, 21, 31syl3anc 1476 . . . . . 6 ((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)))
33 simpr1 1233 . . . . . . . . 9 (((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))) → 𝑑 ∈ ℝ+)
34 simpr2 1235 . . . . . . . . 9 (((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))) → 𝑑 < 1)
35 simplrl 762 . . . . . . . . . 10 (((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))) → 𝑝𝐴)
36 simprr1 1272 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) → ∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1))
3736adantr 466 . . . . . . . . . . 11 (((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))) → ∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1))
38 simprr2 1274 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) → (𝑝𝑍) = 0)
3938adantr 466 . . . . . . . . . . 11 (((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))) → (𝑝𝑍) = 0)
40 simpr3 1237 . . . . . . . . . . 11 (((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))) → ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))
4137, 39, 403jca 1122 . . . . . . . . . 10 (((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))) → (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)))
4235, 41jca 501 . . . . . . . . 9 (((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))) → (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))
4333, 34, 423jca 1122 . . . . . . . 8 (((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))) → (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)))))
4443ex 397 . . . . . . 7 ((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) → ((𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)) → (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))))
4544eximdv 1998 . . . . . 6 ((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) → (∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)) → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))))
4632, 45mpd 15 . . . . 5 ((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)))))
4746ex 397 . . . 4 (𝜑 → ((𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡))) → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))))
4847eximdv 1998 . . 3 (𝜑 → (∃𝑝(𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡))) → ∃𝑝𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))))
4918, 48mpd 15 . 2 (𝜑 → ∃𝑝𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)))))
50 nfv 1995 . . . . . . 7 𝑡 𝑑 ∈ ℝ+
51 nfv 1995 . . . . . . 7 𝑡 𝑑 < 1
52 nfra1 3090 . . . . . . . . 9 𝑡𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1)
53 nfv 1995 . . . . . . . . 9 𝑡(𝑝𝑍) = 0
54 nfra1 3090 . . . . . . . . 9 𝑡𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)
5552, 53, 54nf3an 1983 . . . . . . . 8 𝑡(∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))
5622, 55nfan 1980 . . . . . . 7 𝑡(𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)))
5750, 51, 56nf3an 1983 . . . . . 6 𝑡(𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))
582, 57nfan 1980 . . . . 5 𝑡(𝜑 ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)))))
59 nfcv 2913 . . . . 5 𝑡𝑝
60 eqid 2771 . . . . 5 {𝑡𝑇 ∣ (𝑝𝑡) < (𝑑 / 2)} = {𝑡𝑇 ∣ (𝑝𝑡) < (𝑑 / 2)}
617adantr 466 . . . . 5 ((𝜑 ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))) → 𝐴𝐶)
6283adant1r 1187 . . . . 5 (((𝜑 ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
6393adant1r 1187 . . . . 5 (((𝜑 ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
6410adantlr 694 . . . . 5 (((𝜑 ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))) ∧ 𝑦 ∈ ℝ) → (𝑡𝑇𝑦) ∈ 𝐴)
65 simpr1 1233 . . . . 5 ((𝜑 ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))) → 𝑑 ∈ ℝ+)
66 simpr2 1235 . . . . 5 ((𝜑 ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))) → 𝑑 < 1)
6712adantr 466 . . . . 5 ((𝜑 ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))) → 𝑈𝐽)
6813adantr 466 . . . . 5 ((𝜑 ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))) → 𝑍𝑈)
69 simpr3l 1298 . . . . 5 ((𝜑 ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))) → 𝑝𝐴)
70 simp3r1 1365 . . . . . 6 ((𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)))) → ∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1))
7170adantl 467 . . . . 5 ((𝜑 ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))) → ∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1))
72 simp3r2 1366 . . . . . 6 ((𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)))) → (𝑝𝑍) = 0)
7372adantl 467 . . . . 5 ((𝜑 ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))) → (𝑝𝑍) = 0)
74 simp3r3 1367 . . . . . 6 ((𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)))) → ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))
7574adantl 467 . . . . 5 ((𝜑 ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))) → ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))
761, 58, 59, 3, 60, 5, 6, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 73, 75stoweidlem52 40783 . . . 4 ((𝜑 ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))) → ∃𝑣𝐽 ((𝑍𝑣𝑣𝑈) ∧ ∀𝑒 ∈ ℝ+𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑣 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡))))
7776ex 397 . . 3 (𝜑 → ((𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)))) → ∃𝑣𝐽 ((𝑍𝑣𝑣𝑈) ∧ ∀𝑒 ∈ ℝ+𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑣 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡)))))
7877exlimdvv 2014 . 2 (𝜑 → (∃𝑝𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)))) → ∃𝑣𝐽 ((𝑍𝑣𝑣𝑈) ∧ ∀𝑒 ∈ ℝ+𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑣 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡)))))
7949, 78mpd 15 1 (𝜑 → ∃𝑣𝐽 ((𝑍𝑣𝑣𝑈) ∧ ∀𝑒 ∈ ℝ+𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑣 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wex 1852  wnf 1856  wcel 2145  wnfc 2900  wne 2943  wral 3061  wrex 3062  {crab 3065  cdif 3720  wss 3723   cuni 4575   class class class wbr 4787  cmpt 4864  ran crn 5251  cfv 6030  (class class class)co 6796  cr 10141  0cc0 10142  1c1 10143   + caddc 10145   · cmul 10147   < clt 10280  cle 10281  cmin 10472   / cdiv 10890  2c2 11276  +crp 12035  (,)cioo 12380  topGenctg 16306   Cn ccn 21249  Compccmp 21410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-inf2 8706  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-pre-sup 10220  ax-mulf 10222
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-iin 4658  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-se 5210  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-isom 6039  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-of 7048  df-om 7217  df-1st 7319  df-2nd 7320  df-supp 7451  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-2o 7718  df-oadd 7721  df-er 7900  df-map 8015  df-pm 8016  df-ixp 8067  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-fsupp 8436  df-fi 8477  df-sup 8508  df-inf 8509  df-oi 8575  df-card 8969  df-cda 9196  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-nn 11227  df-2 11285  df-3 11286  df-4 11287  df-5 11288  df-6 11289  df-7 11290  df-8 11291  df-9 11292  df-n0 11500  df-z 11585  df-dec 11701  df-uz 11894  df-q 11997  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12384  df-ico 12386  df-icc 12387  df-fz 12534  df-fzo 12674  df-fl 12801  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-clim 14427  df-rlim 14428  df-sum 14625  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-hom 16174  df-cco 16175  df-rest 16291  df-topn 16292  df-0g 16310  df-gsum 16311  df-topgen 16312  df-pt 16313  df-prds 16316  df-xrs 16370  df-qtop 16375  df-imas 16376  df-xps 16378  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-mulg 17749  df-cntz 17957  df-cmn 18402  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-cnfld 19962  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-cld 21044  df-cn 21252  df-cnp 21253  df-cmp 21411  df-tx 21586  df-hmeo 21779  df-xms 22345  df-ms 22346  df-tms 22347
This theorem is referenced by:  stoweidlem57  40788
  Copyright terms: Public domain W3C validator