Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem54 Structured version   Visualization version   GIF version

Theorem stoweidlem54 40793
Description: There exists a function 𝑥 as in the proof of Lemma 2 in [BrosowskiDeutsh] p. 91. Here 𝐷 is used to represent 𝐴 in the paper, because here 𝐴 is used for the subalgebra of functions. 𝐸 is used to represent ε in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem54.1 𝑖𝜑
stoweidlem54.2 𝑡𝜑
stoweidlem54.3 𝑦𝜑
stoweidlem54.4 𝑤𝜑
stoweidlem54.5 𝑇 = 𝐽
stoweidlem54.6 𝑌 = {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
stoweidlem54.7 𝑃 = (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
stoweidlem54.8 𝐹 = (𝑡𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑦𝑖)‘𝑡)))
stoweidlem54.9 𝑍 = (𝑡𝑇 ↦ (seq1( · , (𝐹𝑡))‘𝑀))
stoweidlem54.10 𝑉 = {𝑤𝐽 ∣ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))}
stoweidlem54.11 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem54.12 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
stoweidlem54.13 (𝜑𝑀 ∈ ℕ)
stoweidlem54.14 (𝜑𝑊:(1...𝑀)⟶𝑉)
stoweidlem54.15 (𝜑𝐵𝑇)
stoweidlem54.16 (𝜑𝐷 ran 𝑊)
stoweidlem54.17 (𝜑𝐷𝑇)
stoweidlem54.18 (𝜑 → ∃𝑦(𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡))))
stoweidlem54.19 (𝜑𝑇 ∈ V)
stoweidlem54.20 (𝜑𝐸 ∈ ℝ+)
stoweidlem54.21 (𝜑𝐸 < (1 / 3))
Assertion
Ref Expression
stoweidlem54 (𝜑 → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡)))
Distinct variable groups:   𝑓,𝑔,,𝑖,𝑡,𝑦,𝑇   𝐴,𝑓,𝑔,,𝑡,𝑦   𝐵,𝑓,𝑔,𝑖,𝑦   𝑓,𝐸,𝑔,𝑖,𝑦   𝑓,𝐹,𝑔   𝑓,𝑀,𝑔,,𝑖,𝑡   𝑓,𝑊,𝑔,𝑖   𝑓,𝑌,𝑔,𝑖   𝜑,𝑓,𝑔   𝑤,𝑖,𝑡,𝑦,𝑇   𝐷,𝑖,𝑦   𝑥,𝑡,𝑦,𝐴   𝑤,𝐵   𝑤,𝐸   𝑤,𝑀   𝑤,𝑊   𝑤,𝑌   𝑥,𝐵   𝑥,𝐷   𝑥,𝐸   𝑥,𝑀   𝑥,𝑃   𝑥,𝑇
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑤,𝑡,𝑒,,𝑖)   𝐴(𝑤,𝑒,𝑖)   𝐵(𝑡,𝑒,)   𝐷(𝑤,𝑡,𝑒,𝑓,𝑔,)   𝑃(𝑦,𝑤,𝑡,𝑒,𝑓,𝑔,,𝑖)   𝑇(𝑒)   𝑈(𝑥,𝑦,𝑤,𝑡,𝑒,𝑓,𝑔,,𝑖)   𝐸(𝑡,𝑒,)   𝐹(𝑥,𝑦,𝑤,𝑡,𝑒,,𝑖)   𝐽(𝑥,𝑦,𝑤,𝑡,𝑒,𝑓,𝑔,,𝑖)   𝑀(𝑦,𝑒)   𝑉(𝑥,𝑦,𝑤,𝑡,𝑒,𝑓,𝑔,,𝑖)   𝑊(𝑥,𝑦,𝑡,𝑒,)   𝑌(𝑥,𝑦,𝑡,𝑒,)   𝑍(𝑥,𝑦,𝑤,𝑡,𝑒,𝑓,𝑔,,𝑖)

Proof of Theorem stoweidlem54
StepHypRef Expression
1 stoweidlem54.3 . . 3 𝑦𝜑
2 nfv 1993 . . 3 𝑦𝑥(𝑥𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡)))
3 stoweidlem54.18 . . 3 (𝜑 → ∃𝑦(𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡))))
4 stoweidlem54.1 . . . . 5 𝑖𝜑
5 nfv 1993 . . . . . 6 𝑖 𝑦:(1...𝑀)⟶𝑌
6 nfra1 3080 . . . . . 6 𝑖𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡))
75, 6nfan 1978 . . . . 5 𝑖(𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))
84, 7nfan 1978 . . . 4 𝑖(𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡))))
9 stoweidlem54.2 . . . . 5 𝑡𝜑
10 nfcv 2903 . . . . . . 7 𝑡𝑦
11 nfcv 2903 . . . . . . 7 𝑡(1...𝑀)
12 stoweidlem54.6 . . . . . . . 8 𝑌 = {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
13 nfra1 3080 . . . . . . . . 9 𝑡𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)
14 nfcv 2903 . . . . . . . . 9 𝑡𝐴
1513, 14nfrab 3263 . . . . . . . 8 𝑡{𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
1612, 15nfcxfr 2901 . . . . . . 7 𝑡𝑌
1710, 11, 16nff 6203 . . . . . 6 𝑡 𝑦:(1...𝑀)⟶𝑌
18 nfra1 3080 . . . . . . . 8 𝑡𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀)
19 nfra1 3080 . . . . . . . 8 𝑡𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)
2018, 19nfan 1978 . . . . . . 7 𝑡(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡))
2111, 20nfral 3084 . . . . . 6 𝑡𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡))
2217, 21nfan 1978 . . . . 5 𝑡(𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))
239, 22nfan 1978 . . . 4 𝑡(𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡))))
24 stoweidlem54.4 . . . . 5 𝑤𝜑
25 nfv 1993 . . . . 5 𝑤(𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))
2624, 25nfan 1978 . . . 4 𝑤(𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡))))
27 stoweidlem54.10 . . . . 5 𝑉 = {𝑤𝐽 ∣ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))}
28 nfrab1 3262 . . . . 5 𝑤{𝑤𝐽 ∣ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))}
2927, 28nfcxfr 2901 . . . 4 𝑤𝑉
30 stoweidlem54.7 . . . 4 𝑃 = (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
31 eqid 2761 . . . 4 (seq1(𝑃, 𝑦)‘𝑀) = (seq1(𝑃, 𝑦)‘𝑀)
32 stoweidlem54.8 . . . 4 𝐹 = (𝑡𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑦𝑖)‘𝑡)))
33 stoweidlem54.9 . . . 4 𝑍 = (𝑡𝑇 ↦ (seq1( · , (𝐹𝑡))‘𝑀))
34 stoweidlem54.13 . . . . 5 (𝜑𝑀 ∈ ℕ)
3534adantr 472 . . . 4 ((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) → 𝑀 ∈ ℕ)
36 stoweidlem54.14 . . . . 5 (𝜑𝑊:(1...𝑀)⟶𝑉)
3736adantr 472 . . . 4 ((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) → 𝑊:(1...𝑀)⟶𝑉)
38 simprl 811 . . . 4 ((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) → 𝑦:(1...𝑀)⟶𝑌)
39 simpr 479 . . . . 5 (((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) ∧ 𝑤𝑉) → 𝑤𝑉)
4027rabeq2i 3338 . . . . . 6 (𝑤𝑉 ↔ (𝑤𝐽 ∧ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))))
4140simplbi 478 . . . . 5 (𝑤𝑉𝑤𝐽)
42 elssuni 4620 . . . . . 6 (𝑤𝐽𝑤 𝐽)
43 stoweidlem54.5 . . . . . 6 𝑇 = 𝐽
4442, 43syl6sseqr 3794 . . . . 5 (𝑤𝐽𝑤𝑇)
4539, 41, 443syl 18 . . . 4 (((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) ∧ 𝑤𝑉) → 𝑤𝑇)
46 stoweidlem54.16 . . . . 5 (𝜑𝐷 ran 𝑊)
4746adantr 472 . . . 4 ((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) → 𝐷 ran 𝑊)
48 stoweidlem54.17 . . . . 5 (𝜑𝐷𝑇)
4948adantr 472 . . . 4 ((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) → 𝐷𝑇)
50 stoweidlem54.15 . . . . 5 (𝜑𝐵𝑇)
5150adantr 472 . . . 4 ((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) → 𝐵𝑇)
52 r19.26 3203 . . . . . . 7 (∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)) ↔ (∀𝑖 ∈ (1...𝑀)∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑖 ∈ (1...𝑀)∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))
5352simplbi 478 . . . . . 6 (∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)) → ∀𝑖 ∈ (1...𝑀)∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀))
5453ad2antll 767 . . . . 5 ((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) → ∀𝑖 ∈ (1...𝑀)∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀))
5554r19.21bi 3071 . . . 4 (((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) ∧ 𝑖 ∈ (1...𝑀)) → ∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀))
5652simprbi 483 . . . . . 6 (∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)) → ∀𝑖 ∈ (1...𝑀)∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡))
5756ad2antll 767 . . . . 5 ((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) → ∀𝑖 ∈ (1...𝑀)∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡))
5857r19.21bi 3071 . . . 4 (((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) ∧ 𝑖 ∈ (1...𝑀)) → ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡))
59 stoweidlem54.11 . . . . 5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
60593adant1r 1188 . . . 4 (((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
61 stoweidlem54.12 . . . . 5 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
6261adantlr 753 . . . 4 (((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) ∧ 𝑓𝐴) → 𝑓:𝑇⟶ℝ)
63 stoweidlem54.19 . . . . 5 (𝜑𝑇 ∈ V)
6463adantr 472 . . . 4 ((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) → 𝑇 ∈ V)
65 stoweidlem54.20 . . . . 5 (𝜑𝐸 ∈ ℝ+)
6665adantr 472 . . . 4 ((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) → 𝐸 ∈ ℝ+)
67 stoweidlem54.21 . . . . 5 (𝜑𝐸 < (1 / 3))
6867adantr 472 . . . 4 ((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) → 𝐸 < (1 / 3))
698, 23, 26, 29, 12, 30, 31, 32, 33, 35, 37, 38, 45, 47, 49, 51, 55, 58, 60, 62, 64, 66, 68stoweidlem51 40790 . . 3 ((𝜑 ∧ (𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦𝑖)‘𝑡)))) → ∃𝑥(𝑥𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡))))
701, 2, 3, 69exlimdd 2236 . 2 (𝜑 → ∃𝑥(𝑥𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡))))
71 df-rex 3057 . 2 (∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡)) ↔ ∃𝑥(𝑥𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡))))
7270, 71sylibr 224 1 (𝜑 → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1632  wex 1853  wnf 1857  wcel 2140  wral 3051  wrex 3052  {crab 3055  Vcvv 3341  cdif 3713  wss 3716   cuni 4589   class class class wbr 4805  cmpt 4882  ran crn 5268  wf 6046  cfv 6050  (class class class)co 6815  cmpt2 6817  cr 10148  0cc0 10149  1c1 10150   · cmul 10154   < clt 10287  cle 10288  cmin 10479   / cdiv 10897  cn 11233  3c3 11284  +crp 12046  ...cfz 12540  seqcseq 13016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-om 7233  df-1st 7335  df-2nd 7336  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-er 7914  df-en 8125  df-dom 8126  df-sdom 8127  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-div 10898  df-nn 11234  df-2 11292  df-3 11293  df-n0 11506  df-z 11591  df-uz 11901  df-rp 12047  df-fz 12541  df-fzo 12681  df-seq 13017  df-exp 13076
This theorem is referenced by:  stoweidlem57  40796
  Copyright terms: Public domain W3C validator