Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem51 Structured version   Visualization version   GIF version

Theorem stoweidlem51 40586
Description: There exists a function x as in the proof of Lemma 2 in [BrosowskiDeutsh] p. 91. Here 𝐷 is used to represent 𝐴 in the paper, because here 𝐴 is used for the subalgebra of functions. 𝐸 is used to represent ε in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem51.1 𝑖𝜑
stoweidlem51.2 𝑡𝜑
stoweidlem51.3 𝑤𝜑
stoweidlem51.4 𝑤𝑉
stoweidlem51.5 𝑌 = {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
stoweidlem51.6 𝑃 = (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
stoweidlem51.7 𝑋 = (seq1(𝑃, 𝑈)‘𝑀)
stoweidlem51.8 𝐹 = (𝑡𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
stoweidlem51.9 𝑍 = (𝑡𝑇 ↦ (seq1( · , (𝐹𝑡))‘𝑀))
stoweidlem51.10 (𝜑𝑀 ∈ ℕ)
stoweidlem51.11 (𝜑𝑊:(1...𝑀)⟶𝑉)
stoweidlem51.12 (𝜑𝑈:(1...𝑀)⟶𝑌)
stoweidlem51.13 ((𝜑𝑤𝑉) → 𝑤𝑇)
stoweidlem51.14 (𝜑𝐷 ran 𝑊)
stoweidlem51.15 (𝜑𝐷𝑇)
stoweidlem51.16 (𝜑𝐵𝑇)
stoweidlem51.17 ((𝜑𝑖 ∈ (1...𝑀)) → ∀𝑡 ∈ (𝑊𝑖)((𝑈𝑖)‘𝑡) < (𝐸 / 𝑀))
stoweidlem51.18 ((𝜑𝑖 ∈ (1...𝑀)) → ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑈𝑖)‘𝑡))
stoweidlem51.19 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem51.20 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
stoweidlem51.21 (𝜑𝑇 ∈ V)
stoweidlem51.22 (𝜑𝐸 ∈ ℝ+)
stoweidlem51.23 (𝜑𝐸 < (1 / 3))
Assertion
Ref Expression
stoweidlem51 (𝜑 → ∃𝑥(𝑥𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡))))
Distinct variable groups:   𝑓,𝑔,,𝑡,𝐴   𝑓,𝑖,𝑀,,𝑡   𝑓,𝐹,𝑔   𝑇,𝑓,𝑔,,𝑡   𝑈,𝑓,𝑔,,𝑡   𝑓,𝑌,𝑔   𝜑,𝑓,𝑔   𝑔,𝑀   𝑤,𝑖,𝑇   𝐵,𝑖   𝐷,𝑖   𝑖,𝐸   𝑈,𝑖   𝑖,𝑊,𝑤   𝑥,𝑡,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝐸   𝑥,𝑇   𝑥,𝑋
Allowed substitution hints:   𝜑(𝑥,𝑤,𝑡,,𝑖)   𝐴(𝑤,𝑖)   𝐵(𝑤,𝑡,𝑓,𝑔,)   𝐷(𝑤,𝑡,𝑓,𝑔,)   𝑃(𝑥,𝑤,𝑡,𝑓,𝑔,,𝑖)   𝑈(𝑥,𝑤)   𝐸(𝑤,𝑡,𝑓,𝑔,)   𝐹(𝑥,𝑤,𝑡,,𝑖)   𝑀(𝑥,𝑤)   𝑉(𝑥,𝑤,𝑡,𝑓,𝑔,,𝑖)   𝑊(𝑥,𝑡,𝑓,𝑔,)   𝑋(𝑤,𝑡,𝑓,𝑔,,𝑖)   𝑌(𝑥,𝑤,𝑡,,𝑖)   𝑍(𝑥,𝑤,𝑡,𝑓,𝑔,,𝑖)

Proof of Theorem stoweidlem51
StepHypRef Expression
1 stoweidlem51.5 . . . 4 𝑌 = {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
2 ssrab2 3720 . . . 4 {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)} ⊆ 𝐴
31, 2eqsstri 3668 . . 3 𝑌𝐴
4 stoweidlem51.6 . . . 4 𝑃 = (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
5 stoweidlem51.7 . . . 4 𝑋 = (seq1(𝑃, 𝑈)‘𝑀)
6 1zzd 11446 . . . . . 6 (𝜑 → 1 ∈ ℤ)
7 stoweidlem51.10 . . . . . . 7 (𝜑𝑀 ∈ ℕ)
87nnzd 11519 . . . . . 6 (𝜑𝑀 ∈ ℤ)
96, 8, 83jca 1261 . . . . 5 (𝜑 → (1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑀 ∈ ℤ))
107nnge1d 11101 . . . . . 6 (𝜑 → 1 ≤ 𝑀)
117nnred 11073 . . . . . . 7 (𝜑𝑀 ∈ ℝ)
1211leidd 10632 . . . . . 6 (𝜑𝑀𝑀)
1310, 12jca 553 . . . . 5 (𝜑 → (1 ≤ 𝑀𝑀𝑀))
14 elfz2 12371 . . . . 5 (𝑀 ∈ (1...𝑀) ↔ ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (1 ≤ 𝑀𝑀𝑀)))
159, 13, 14sylanbrc 699 . . . 4 (𝜑𝑀 ∈ (1...𝑀))
16 stoweidlem51.12 . . . 4 (𝜑𝑈:(1...𝑀)⟶𝑌)
17 stoweidlem51.2 . . . . 5 𝑡𝜑
18 eqid 2651 . . . . 5 (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) = (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡)))
19 stoweidlem51.20 . . . . 5 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
20 stoweidlem51.19 . . . . 5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
2117, 1, 18, 19, 20stoweidlem16 40551 . . . 4 ((𝜑𝑓𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝑌)
22 stoweidlem51.21 . . . 4 (𝜑𝑇 ∈ V)
234, 5, 15, 16, 21, 22fmulcl 40131 . . 3 (𝜑𝑋𝑌)
243, 23sseldi 3634 . 2 (𝜑𝑋𝐴)
251eleq2i 2722 . . . . . . 7 (𝑋𝑌𝑋 ∈ {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)})
26 nfcv 2793 . . . . . . . . . . 11 1
27 nfrab1 3152 . . . . . . . . . . . . . 14 {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
281, 27nfcxfr 2791 . . . . . . . . . . . . 13 𝑌
29 nfcv 2793 . . . . . . . . . . . . 13 (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡)))
3028, 28, 29nfmpt2 6766 . . . . . . . . . . . 12 (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
314, 30nfcxfr 2791 . . . . . . . . . . 11 𝑃
32 nfcv 2793 . . . . . . . . . . 11 𝑈
3326, 31, 32nfseq 12851 . . . . . . . . . 10 seq1(𝑃, 𝑈)
34 nfcv 2793 . . . . . . . . . 10 𝑀
3533, 34nffv 6236 . . . . . . . . 9 (seq1(𝑃, 𝑈)‘𝑀)
365, 35nfcxfr 2791 . . . . . . . 8 𝑋
37 nfcv 2793 . . . . . . . 8 𝐴
38 nfcv 2793 . . . . . . . . 9 𝑇
39 nfcv 2793 . . . . . . . . . . 11 0
40 nfcv 2793 . . . . . . . . . . 11
41 nfcv 2793 . . . . . . . . . . . 12 𝑡
4236, 41nffv 6236 . . . . . . . . . . 11 (𝑋𝑡)
4339, 40, 42nfbr 4732 . . . . . . . . . 10 0 ≤ (𝑋𝑡)
4442, 40, 26nfbr 4732 . . . . . . . . . 10 (𝑋𝑡) ≤ 1
4543, 44nfan 1868 . . . . . . . . 9 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1)
4638, 45nfral 2974 . . . . . . . 8 𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1)
47 nfcv 2793 . . . . . . . . . . . . 13 𝑡1
48 nfra1 2970 . . . . . . . . . . . . . . . . 17 𝑡𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)
49 nfcv 2793 . . . . . . . . . . . . . . . . 17 𝑡𝐴
5048, 49nfrab 3153 . . . . . . . . . . . . . . . 16 𝑡{𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
511, 50nfcxfr 2791 . . . . . . . . . . . . . . 15 𝑡𝑌
52 nfmpt1 4780 . . . . . . . . . . . . . . 15 𝑡(𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡)))
5351, 51, 52nfmpt2 6766 . . . . . . . . . . . . . 14 𝑡(𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
544, 53nfcxfr 2791 . . . . . . . . . . . . 13 𝑡𝑃
55 nfcv 2793 . . . . . . . . . . . . 13 𝑡𝑈
5647, 54, 55nfseq 12851 . . . . . . . . . . . 12 𝑡seq1(𝑃, 𝑈)
57 nfcv 2793 . . . . . . . . . . . 12 𝑡𝑀
5856, 57nffv 6236 . . . . . . . . . . 11 𝑡(seq1(𝑃, 𝑈)‘𝑀)
595, 58nfcxfr 2791 . . . . . . . . . 10 𝑡𝑋
6059nfeq2 2809 . . . . . . . . 9 𝑡 = 𝑋
61 fveq1 6228 . . . . . . . . . . 11 ( = 𝑋 → (𝑡) = (𝑋𝑡))
6261breq2d 4697 . . . . . . . . . 10 ( = 𝑋 → (0 ≤ (𝑡) ↔ 0 ≤ (𝑋𝑡)))
6361breq1d 4695 . . . . . . . . . 10 ( = 𝑋 → ((𝑡) ≤ 1 ↔ (𝑋𝑡) ≤ 1))
6462, 63anbi12d 747 . . . . . . . . 9 ( = 𝑋 → ((0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1)))
6560, 64ralbid 3012 . . . . . . . 8 ( = 𝑋 → (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1)))
6636, 37, 46, 65elrabf 3392 . . . . . . 7 (𝑋 ∈ {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)} ↔ (𝑋𝐴 ∧ ∀𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1)))
6725, 66bitri 264 . . . . . 6 (𝑋𝑌 ↔ (𝑋𝐴 ∧ ∀𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1)))
6823, 67sylib 208 . . . . 5 (𝜑 → (𝑋𝐴 ∧ ∀𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1)))
6968simprd 478 . . . 4 (𝜑 → ∀𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1))
70 stoweidlem51.1 . . . . 5 𝑖𝜑
71 stoweidlem51.8 . . . . 5 𝐹 = (𝑡𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
72 stoweidlem51.9 . . . . 5 𝑍 = (𝑡𝑇 ↦ (seq1( · , (𝐹𝑡))‘𝑀))
73 stoweidlem51.11 . . . . 5 (𝜑𝑊:(1...𝑀)⟶𝑉)
74 stoweidlem51.14 . . . . 5 (𝜑𝐷 ran 𝑊)
75 stoweidlem51.15 . . . . 5 (𝜑𝐷𝑇)
76 nfv 1883 . . . . . . 7 𝑡 𝑖 ∈ (1...𝑀)
7717, 76nfan 1868 . . . . . 6 𝑡(𝜑𝑖 ∈ (1...𝑀))
7816ffvelrnda 6399 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑈𝑖) ∈ 𝑌)
79 fveq1 6228 . . . . . . . . . . . . . . . . 17 ( = (𝑈𝑖) → (𝑡) = ((𝑈𝑖)‘𝑡))
8079breq2d 4697 . . . . . . . . . . . . . . . 16 ( = (𝑈𝑖) → (0 ≤ (𝑡) ↔ 0 ≤ ((𝑈𝑖)‘𝑡)))
8179breq1d 4695 . . . . . . . . . . . . . . . 16 ( = (𝑈𝑖) → ((𝑡) ≤ 1 ↔ ((𝑈𝑖)‘𝑡) ≤ 1))
8280, 81anbi12d 747 . . . . . . . . . . . . . . 15 ( = (𝑈𝑖) → ((0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ (0 ≤ ((𝑈𝑖)‘𝑡) ∧ ((𝑈𝑖)‘𝑡) ≤ 1)))
8382ralbidv 3015 . . . . . . . . . . . . . 14 ( = (𝑈𝑖) → (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ ((𝑈𝑖)‘𝑡) ∧ ((𝑈𝑖)‘𝑡) ≤ 1)))
8483, 1elrab2 3399 . . . . . . . . . . . . 13 ((𝑈𝑖) ∈ 𝑌 ↔ ((𝑈𝑖) ∈ 𝐴 ∧ ∀𝑡𝑇 (0 ≤ ((𝑈𝑖)‘𝑡) ∧ ((𝑈𝑖)‘𝑡) ≤ 1)))
8584simplbi 475 . . . . . . . . . . . 12 ((𝑈𝑖) ∈ 𝑌 → (𝑈𝑖) ∈ 𝐴)
8678, 85syl 17 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑈𝑖) ∈ 𝐴)
87 eleq1 2718 . . . . . . . . . . . . . . 15 (𝑓 = (𝑈𝑖) → (𝑓𝐴 ↔ (𝑈𝑖) ∈ 𝐴))
8887anbi2d 740 . . . . . . . . . . . . . 14 (𝑓 = (𝑈𝑖) → ((𝜑𝑓𝐴) ↔ (𝜑 ∧ (𝑈𝑖) ∈ 𝐴)))
89 feq1 6064 . . . . . . . . . . . . . 14 (𝑓 = (𝑈𝑖) → (𝑓:𝑇⟶ℝ ↔ (𝑈𝑖):𝑇⟶ℝ))
9088, 89imbi12d 333 . . . . . . . . . . . . 13 (𝑓 = (𝑈𝑖) → (((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑 ∧ (𝑈𝑖) ∈ 𝐴) → (𝑈𝑖):𝑇⟶ℝ)))
9119a1i 11 . . . . . . . . . . . . 13 (𝑓𝐴 → ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ))
9290, 91vtoclga 3303 . . . . . . . . . . . 12 ((𝑈𝑖) ∈ 𝐴 → ((𝜑 ∧ (𝑈𝑖) ∈ 𝐴) → (𝑈𝑖):𝑇⟶ℝ))
9392anabsi7 877 . . . . . . . . . . 11 ((𝜑 ∧ (𝑈𝑖) ∈ 𝐴) → (𝑈𝑖):𝑇⟶ℝ)
9486, 93syldan 486 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑈𝑖):𝑇⟶ℝ)
9594adantr 480 . . . . . . . . 9 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊𝑖)) → (𝑈𝑖):𝑇⟶ℝ)
9673ffvelrnda 6399 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑊𝑖) ∈ 𝑉)
97 simpl 472 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...𝑀)) → 𝜑)
9897, 96jca 553 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (1...𝑀)) → (𝜑 ∧ (𝑊𝑖) ∈ 𝑉))
99 stoweidlem51.3 . . . . . . . . . . . . . 14 𝑤𝜑
100 stoweidlem51.4 . . . . . . . . . . . . . . 15 𝑤𝑉
101100nfel2 2810 . . . . . . . . . . . . . 14 𝑤(𝑊𝑖) ∈ 𝑉
10299, 101nfan 1868 . . . . . . . . . . . . 13 𝑤(𝜑 ∧ (𝑊𝑖) ∈ 𝑉)
103 nfv 1883 . . . . . . . . . . . . 13 𝑤(𝑊𝑖) ⊆ 𝑇
104102, 103nfim 1865 . . . . . . . . . . . 12 𝑤((𝜑 ∧ (𝑊𝑖) ∈ 𝑉) → (𝑊𝑖) ⊆ 𝑇)
105 eleq1 2718 . . . . . . . . . . . . . 14 (𝑤 = (𝑊𝑖) → (𝑤𝑉 ↔ (𝑊𝑖) ∈ 𝑉))
106105anbi2d 740 . . . . . . . . . . . . 13 (𝑤 = (𝑊𝑖) → ((𝜑𝑤𝑉) ↔ (𝜑 ∧ (𝑊𝑖) ∈ 𝑉)))
107 sseq1 3659 . . . . . . . . . . . . 13 (𝑤 = (𝑊𝑖) → (𝑤𝑇 ↔ (𝑊𝑖) ⊆ 𝑇))
108106, 107imbi12d 333 . . . . . . . . . . . 12 (𝑤 = (𝑊𝑖) → (((𝜑𝑤𝑉) → 𝑤𝑇) ↔ ((𝜑 ∧ (𝑊𝑖) ∈ 𝑉) → (𝑊𝑖) ⊆ 𝑇)))
109 stoweidlem51.13 . . . . . . . . . . . 12 ((𝜑𝑤𝑉) → 𝑤𝑇)
110104, 108, 109vtoclg1f 3296 . . . . . . . . . . 11 ((𝑊𝑖) ∈ 𝑉 → ((𝜑 ∧ (𝑊𝑖) ∈ 𝑉) → (𝑊𝑖) ⊆ 𝑇))
11196, 98, 110sylc 65 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑊𝑖) ⊆ 𝑇)
112111sselda 3636 . . . . . . . . 9 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊𝑖)) → 𝑡𝑇)
11395, 112ffvelrnd 6400 . . . . . . . 8 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊𝑖)) → ((𝑈𝑖)‘𝑡) ∈ ℝ)
114 stoweidlem51.22 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℝ+)
115114rpred 11910 . . . . . . . . . 10 (𝜑𝐸 ∈ ℝ)
116115ad2antrr 762 . . . . . . . . 9 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊𝑖)) → 𝐸 ∈ ℝ)
11711ad2antrr 762 . . . . . . . . 9 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊𝑖)) → 𝑀 ∈ ℝ)
1187nnne0d 11103 . . . . . . . . . 10 (𝜑𝑀 ≠ 0)
119118ad2antrr 762 . . . . . . . . 9 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊𝑖)) → 𝑀 ≠ 0)
120116, 117, 119redivcld 10891 . . . . . . . 8 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊𝑖)) → (𝐸 / 𝑀) ∈ ℝ)
121 stoweidlem51.17 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...𝑀)) → ∀𝑡 ∈ (𝑊𝑖)((𝑈𝑖)‘𝑡) < (𝐸 / 𝑀))
122121r19.21bi 2961 . . . . . . . 8 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊𝑖)) → ((𝑈𝑖)‘𝑡) < (𝐸 / 𝑀))
123 1red 10093 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℝ)
124 0lt1 10588 . . . . . . . . . . . . 13 0 < 1
125124a1i 11 . . . . . . . . . . . 12 (𝜑 → 0 < 1)
1267nngt0d 11102 . . . . . . . . . . . 12 (𝜑 → 0 < 𝑀)
127114rpregt0d 11916 . . . . . . . . . . . 12 (𝜑 → (𝐸 ∈ ℝ ∧ 0 < 𝐸))
128 lediv2 10951 . . . . . . . . . . . 12 (((1 ∈ ℝ ∧ 0 < 1) ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀) ∧ (𝐸 ∈ ℝ ∧ 0 < 𝐸)) → (1 ≤ 𝑀 ↔ (𝐸 / 𝑀) ≤ (𝐸 / 1)))
129123, 125, 11, 126, 127, 128syl221anc 1377 . . . . . . . . . . 11 (𝜑 → (1 ≤ 𝑀 ↔ (𝐸 / 𝑀) ≤ (𝐸 / 1)))
13010, 129mpbid 222 . . . . . . . . . 10 (𝜑 → (𝐸 / 𝑀) ≤ (𝐸 / 1))
131114rpcnd 11912 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℂ)
132131div1d 10831 . . . . . . . . . 10 (𝜑 → (𝐸 / 1) = 𝐸)
133130, 132breqtrd 4711 . . . . . . . . 9 (𝜑 → (𝐸 / 𝑀) ≤ 𝐸)
134133ad2antrr 762 . . . . . . . 8 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊𝑖)) → (𝐸 / 𝑀) ≤ 𝐸)
135113, 120, 116, 122, 134ltletrd 10235 . . . . . . 7 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊𝑖)) → ((𝑈𝑖)‘𝑡) < 𝐸)
136135ex 449 . . . . . 6 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑡 ∈ (𝑊𝑖) → ((𝑈𝑖)‘𝑡) < 𝐸))
13777, 136ralrimi 2986 . . . . 5 ((𝜑𝑖 ∈ (1...𝑀)) → ∀𝑡 ∈ (𝑊𝑖)((𝑈𝑖)‘𝑡) < 𝐸)
13870, 17, 1, 4, 5, 71, 72, 7, 73, 16, 74, 75, 137, 22, 19, 20, 114stoweidlem48 40583 . . . 4 (𝜑 → ∀𝑡𝐷 (𝑋𝑡) < 𝐸)
139 stoweidlem51.18 . . . . 5 ((𝜑𝑖 ∈ (1...𝑀)) → ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑈𝑖)‘𝑡))
140 stoweidlem51.23 . . . . 5 (𝜑𝐸 < (1 / 3))
1413sseli 3632 . . . . . 6 (𝑓𝑌𝑓𝐴)
142141, 19sylan2 490 . . . . 5 ((𝜑𝑓𝑌) → 𝑓:𝑇⟶ℝ)
143 stoweidlem51.16 . . . . 5 (𝜑𝐵𝑇)
14470, 17, 51, 4, 5, 71, 72, 7, 16, 139, 114, 140, 142, 21, 22, 143stoweidlem42 40577 . . . 4 (𝜑 → ∀𝑡𝐵 (1 − 𝐸) < (𝑋𝑡))
14569, 138, 1443jca 1261 . . 3 (𝜑 → (∀𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑋𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑋𝑡)))
14624, 145jca 553 . 2 (𝜑 → (𝑋𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑋𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑋𝑡))))
147 eleq1 2718 . . . 4 (𝑥 = 𝑋 → (𝑥𝐴𝑋𝐴))
14859nfeq2 2809 . . . . . 6 𝑡 𝑥 = 𝑋
149 fveq1 6228 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥𝑡) = (𝑋𝑡))
150149breq2d 4697 . . . . . . 7 (𝑥 = 𝑋 → (0 ≤ (𝑥𝑡) ↔ 0 ≤ (𝑋𝑡)))
151149breq1d 4695 . . . . . . 7 (𝑥 = 𝑋 → ((𝑥𝑡) ≤ 1 ↔ (𝑋𝑡) ≤ 1))
152150, 151anbi12d 747 . . . . . 6 (𝑥 = 𝑋 → ((0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ↔ (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1)))
153148, 152ralbid 3012 . . . . 5 (𝑥 = 𝑋 → (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1)))
154149breq1d 4695 . . . . . 6 (𝑥 = 𝑋 → ((𝑥𝑡) < 𝐸 ↔ (𝑋𝑡) < 𝐸))
155148, 154ralbid 3012 . . . . 5 (𝑥 = 𝑋 → (∀𝑡𝐷 (𝑥𝑡) < 𝐸 ↔ ∀𝑡𝐷 (𝑋𝑡) < 𝐸))
156149breq2d 4697 . . . . . 6 (𝑥 = 𝑋 → ((1 − 𝐸) < (𝑥𝑡) ↔ (1 − 𝐸) < (𝑋𝑡)))
157148, 156ralbid 3012 . . . . 5 (𝑥 = 𝑋 → (∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡) ↔ ∀𝑡𝐵 (1 − 𝐸) < (𝑋𝑡)))
158153, 155, 1573anbi123d 1439 . . . 4 (𝑥 = 𝑋 → ((∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡)) ↔ (∀𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑋𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑋𝑡))))
159147, 158anbi12d 747 . . 3 (𝑥 = 𝑋 → ((𝑥𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡))) ↔ (𝑋𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑋𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑋𝑡)))))
160159spcegv 3325 . 2 (𝑋𝐴 → ((𝑋𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑋𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑋𝑡))) → ∃𝑥(𝑥𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡)))))
16124, 146, 160sylc 65 1 (𝜑 → ∃𝑥(𝑥𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wex 1744  wnf 1748  wcel 2030  wnfc 2780  wne 2823  wral 2941  {crab 2945  Vcvv 3231  wss 3607   cuni 4468   class class class wbr 4685  cmpt 4762  ran crn 5144  wf 5922  cfv 5926  (class class class)co 6690  cmpt2 6692  cr 9973  0cc0 9974  1c1 9975   · cmul 9979   < clt 10112  cle 10113  cmin 10304   / cdiv 10722  cn 11058  3c3 11109  cz 11415  +crp 11870  ...cfz 12364  seqcseq 12841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-fz 12365  df-fzo 12505  df-seq 12842  df-exp 12901
This theorem is referenced by:  stoweidlem54  40589
  Copyright terms: Public domain W3C validator