Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem49 Structured version   Visualization version   GIF version

Theorem stoweidlem49 40777
Description: There exists a function qn as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 91 (at the top of page 91): 0 <= qn <= 1 , qn < ε on 𝑇𝑈, and qn > 1 - ε on 𝑉. Here y is used to represent the final qn in the paper (the one with n large enough), 𝑁 represents 𝑛 in the paper, 𝐾 represents 𝑘, 𝐷 represents δ, 𝐸 represents ε, and 𝑃 represents 𝑝. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem49.1 𝑡𝑃
stoweidlem49.2 𝑡𝜑
stoweidlem49.3 𝑉 = {𝑡𝑇 ∣ (𝑃𝑡) < (𝐷 / 2)}
stoweidlem49.4 (𝜑𝐷 ∈ ℝ+)
stoweidlem49.5 (𝜑𝐷 < 1)
stoweidlem49.6 (𝜑𝑃𝐴)
stoweidlem49.7 (𝜑𝑃:𝑇⟶ℝ)
stoweidlem49.8 (𝜑 → ∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1))
stoweidlem49.9 (𝜑 → ∀𝑡 ∈ (𝑇𝑈)𝐷 ≤ (𝑃𝑡))
stoweidlem49.10 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
stoweidlem49.11 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem49.12 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem49.13 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweidlem49.14 (𝜑𝐸 ∈ ℝ+)
Assertion
Ref Expression
stoweidlem49 (𝜑 → ∃𝑦𝐴 (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝐸) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝐸))
Distinct variable groups:   𝑓,𝑔,𝑡,𝐴   𝐷,𝑓,𝑔,𝑡   𝑓,𝐸,𝑔,𝑡   𝑃,𝑓,𝑔   𝑇,𝑓,𝑔,𝑡   𝜑,𝑓,𝑔   𝑥,𝐷   𝑥,𝐸   𝜑,𝑥   𝑦,𝑡,𝐴   𝑦,𝑈   𝑦,𝑉   𝑥,𝑡,𝐴   𝑥,𝑇   𝑦,𝐸   𝑦,𝑃   𝑦,𝑇
Allowed substitution hints:   𝜑(𝑦,𝑡)   𝐷(𝑦)   𝑃(𝑥,𝑡)   𝑈(𝑥,𝑡,𝑓,𝑔)   𝑉(𝑥,𝑡,𝑓,𝑔)

Proof of Theorem stoweidlem49
Dummy variables 𝑘 𝑛 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 4788 . . . . 5 (𝑗 = 𝑖 → ((1 / 𝐷) < 𝑗 ↔ (1 / 𝐷) < 𝑖))
21cbvrabv 3348 . . . 4 {𝑗 ∈ ℕ ∣ (1 / 𝐷) < 𝑗} = {𝑖 ∈ ℕ ∣ (1 / 𝐷) < 𝑖}
3 stoweidlem49.4 . . . 4 (𝜑𝐷 ∈ ℝ+)
4 stoweidlem49.5 . . . 4 (𝜑𝐷 < 1)
52, 3, 4stoweidlem14 40742 . . 3 (𝜑 → ∃𝑘 ∈ ℕ (1 < (𝑘 · 𝐷) ∧ ((𝑘 · 𝐷) / 2) < 1))
6 eqid 2770 . . . . . 6 (𝑖 ∈ ℕ0 ↦ ((1 / (𝑘 · 𝐷))↑𝑖)) = (𝑖 ∈ ℕ0 ↦ ((1 / (𝑘 · 𝐷))↑𝑖))
7 eqid 2770 . . . . . 6 (𝑖 ∈ ℕ0 ↦ (((𝑘 · 𝐷) / 2)↑𝑖)) = (𝑖 ∈ ℕ0 ↦ (((𝑘 · 𝐷) / 2)↑𝑖))
8 nnre 11228 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
98adantl 467 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℝ)
103rpred 12074 . . . . . . . . 9 (𝜑𝐷 ∈ ℝ)
1110adantr 466 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝐷 ∈ ℝ)
129, 11remulcld 10271 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝑘 · 𝐷) ∈ ℝ)
1312adantr 466 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ (1 < (𝑘 · 𝐷) ∧ ((𝑘 · 𝐷) / 2) < 1)) → (𝑘 · 𝐷) ∈ ℝ)
14 simprl 746 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ (1 < (𝑘 · 𝐷) ∧ ((𝑘 · 𝐷) / 2) < 1)) → 1 < (𝑘 · 𝐷))
1512rehalfcld 11480 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((𝑘 · 𝐷) / 2) ∈ ℝ)
16 nngt0 11250 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 0 < 𝑘)
1716adantl 467 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 0 < 𝑘)
183rpgt0d 12077 . . . . . . . . . . 11 (𝜑 → 0 < 𝐷)
1918adantr 466 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 0 < 𝐷)
209, 11, 17, 19mulgt0d 10393 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → 0 < (𝑘 · 𝐷))
21 2re 11291 . . . . . . . . . . 11 2 ∈ ℝ
22 2pos 11313 . . . . . . . . . . 11 0 < 2
2321, 22pm3.2i 447 . . . . . . . . . 10 (2 ∈ ℝ ∧ 0 < 2)
2423a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (2 ∈ ℝ ∧ 0 < 2))
25 divgt0 11092 . . . . . . . . 9 ((((𝑘 · 𝐷) ∈ ℝ ∧ 0 < (𝑘 · 𝐷)) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 < ((𝑘 · 𝐷) / 2))
2612, 20, 24, 25syl21anc 1474 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 0 < ((𝑘 · 𝐷) / 2))
2715, 26elrpd 12071 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((𝑘 · 𝐷) / 2) ∈ ℝ+)
2827adantr 466 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ (1 < (𝑘 · 𝐷) ∧ ((𝑘 · 𝐷) / 2) < 1)) → ((𝑘 · 𝐷) / 2) ∈ ℝ+)
29 simprr 748 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ (1 < (𝑘 · 𝐷) ∧ ((𝑘 · 𝐷) / 2) < 1)) → ((𝑘 · 𝐷) / 2) < 1)
30 stoweidlem49.14 . . . . . . 7 (𝜑𝐸 ∈ ℝ+)
3130ad2antrr 697 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ (1 < (𝑘 · 𝐷) ∧ ((𝑘 · 𝐷) / 2) < 1)) → 𝐸 ∈ ℝ+)
326, 7, 13, 14, 28, 29, 31stoweidlem7 40735 . . . . 5 (((𝜑𝑘 ∈ ℕ) ∧ (1 < (𝑘 · 𝐷) ∧ ((𝑘 · 𝐷) / 2) < 1)) → ∃𝑛 ∈ ℕ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸))
3332ex 397 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((1 < (𝑘 · 𝐷) ∧ ((𝑘 · 𝐷) / 2) < 1) → ∃𝑛 ∈ ℕ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)))
3433reximdva 3164 . . 3 (𝜑 → (∃𝑘 ∈ ℕ (1 < (𝑘 · 𝐷) ∧ ((𝑘 · 𝐷) / 2) < 1) → ∃𝑘 ∈ ℕ ∃𝑛 ∈ ℕ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)))
355, 34mpd 15 . 2 (𝜑 → ∃𝑘 ∈ ℕ ∃𝑛 ∈ ℕ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸))
36 stoweidlem49.1 . . . . 5 𝑡𝑃
37 stoweidlem49.2 . . . . . . 7 𝑡𝜑
38 nfv 1994 . . . . . . 7 𝑡(𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ)
3937, 38nfan 1979 . . . . . 6 𝑡(𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ))
40 nfv 1994 . . . . . 6 𝑡((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)
4139, 40nfan 1979 . . . . 5 𝑡((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸))
42 stoweidlem49.3 . . . . 5 𝑉 = {𝑡𝑇 ∣ (𝑃𝑡) < (𝐷 / 2)}
43 eqid 2770 . . . . 5 (𝑡𝑇 ↦ ((1 − ((𝑃𝑡)↑𝑛))↑(𝑘𝑛))) = (𝑡𝑇 ↦ ((1 − ((𝑃𝑡)↑𝑛))↑(𝑘𝑛)))
44 simplrr 755 . . . . 5 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)) → 𝑛 ∈ ℕ)
45 simplrl 754 . . . . 5 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)) → 𝑘 ∈ ℕ)
463ad2antrr 697 . . . . 5 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)) → 𝐷 ∈ ℝ+)
474ad2antrr 697 . . . . 5 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)) → 𝐷 < 1)
48 stoweidlem49.6 . . . . . 6 (𝜑𝑃𝐴)
4948ad2antrr 697 . . . . 5 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)) → 𝑃𝐴)
50 stoweidlem49.7 . . . . . 6 (𝜑𝑃:𝑇⟶ℝ)
5150ad2antrr 697 . . . . 5 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)) → 𝑃:𝑇⟶ℝ)
52 stoweidlem49.8 . . . . . 6 (𝜑 → ∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1))
5352ad2antrr 697 . . . . 5 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)) → ∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1))
54 stoweidlem49.9 . . . . . 6 (𝜑 → ∀𝑡 ∈ (𝑇𝑈)𝐷 ≤ (𝑃𝑡))
5554ad2antrr 697 . . . . 5 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)) → ∀𝑡 ∈ (𝑇𝑈)𝐷 ≤ (𝑃𝑡))
56 stoweidlem49.10 . . . . . 6 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
5756ad4ant14 1207 . . . . 5 ((((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)) ∧ 𝑓𝐴) → 𝑓:𝑇⟶ℝ)
58 simp1ll 1301 . . . . . 6 ((((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)) ∧ 𝑓𝐴𝑔𝐴) → 𝜑)
59 stoweidlem49.11 . . . . . 6 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
6058, 59syld3an1 1515 . . . . 5 ((((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
61 stoweidlem49.12 . . . . . 6 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
6258, 61syld3an1 1515 . . . . 5 ((((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
63 stoweidlem49.13 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
6463ad4ant14 1207 . . . . 5 ((((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)) ∧ 𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
6530ad2antrr 697 . . . . 5 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)) → 𝐸 ∈ ℝ+)
66 simprl 746 . . . . 5 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)) → (1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)))
67 simprr 748 . . . . 5 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)) → (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)
6836, 41, 42, 43, 44, 45, 46, 47, 49, 51, 53, 55, 57, 60, 62, 64, 65, 66, 67stoweidlem45 40773 . . . 4 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)) → ∃𝑦𝐴 (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝐸) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝐸))
6968ex 397 . . 3 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸) → ∃𝑦𝐴 (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝐸) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝐸)))
7069rexlimdvva 3185 . 2 (𝜑 → (∃𝑘 ∈ ℕ ∃𝑛 ∈ ℕ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸) → ∃𝑦𝐴 (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝐸) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝐸)))
7135, 70mpd 15 1 (𝜑 → ∃𝑦𝐴 (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝐸) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1070   = wceq 1630  wnf 1855  wcel 2144  wnfc 2899  wral 3060  wrex 3061  {crab 3064  cdif 3718   class class class wbr 4784  cmpt 4861  wf 6027  cfv 6031  (class class class)co 6792  cr 10136  0cc0 10137  1c1 10138   + caddc 10140   · cmul 10142   < clt 10275  cle 10276  cmin 10467   / cdiv 10885  cn 11221  2c2 11271  0cn0 11493  +crp 12034  cexp 13066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-pm 8011  df-en 8109  df-dom 8110  df-sdom 8111  df-sup 8503  df-inf 8504  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-3 11281  df-n0 11494  df-z 11579  df-uz 11888  df-rp 12035  df-fl 12800  df-seq 13008  df-exp 13067  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-clim 14426  df-rlim 14427
This theorem is referenced by:  stoweidlem52  40780
  Copyright terms: Public domain W3C validator